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ABSTRACT 
Hurricane Sandy wrought $6 billion in damage, took 162 
lives, and displaced 776,000 people after hitting the US 
Eastern seaboard on October 29, 2012. Because of its 
massive impact, the hurricane also spurred a flurry of social 
media activity, both by the population immediately affected 
and by the globally convergent crowd. In this paper we 
explore how retweeting activity by the geographically 
vulnerable differs (if at all) from that of the general Twitter 
population. We investigate whether they spread information 
differently, including what and whose content they chose to 
propagate. We investigate whether the Twitter-based 
relationships are preexisting or if they are newly formed 
because of the disaster, and if so if they persist. We find 
that the people in the path of the disaster favor in their 
retweeting locally-created tweets and those with locally-
actionable information. They also form denser networks of 
information propagation during disaster than before or after.  
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INTRODUCTION 
Social media are platforms for one-to-many communication 
that are being used by the public during disaster response 
for a range of purposes. A flourishing body of research on 

the topic has developed in the last 5 years, with a 
community of researchers working apace with the socio-
behavioral phenomena that are advancing in kind and 
number with each disaster. Some research in the crisis 
informatics space examines how formal responders use or 
do not use social media [6, 15, 17, 18]. Another line 
considers how online communication affects on-the-ground 
action before, during, and after disasters [30, 36, 44, 45]. 

However, the largest body of work is on the internal 
behaviors of the “Twittersphere” and other social media 
environments. Here again the research directions branch, 
with much work devoted to deriving data from existing 
social media logs using supervised and unsupervised 
machine learning (for example, [19, 42]) as well as other 
techniques [1, 6, 10]. The second branch of research that 
focuses on the social media posts as the objects of study is 
that which attempts to understand socio-behavioral 
phenomena. This includes sentiment analysis across the 
population represented in the streams of social media 
communication [7, 11]. It also includes analysis of self-
organizing behaviors of groups that come together through 
social media to accomplish some task such as event 
reporting [20, 21, 22, 31] or a task they articulate as a 
particular need during that event [38, 44]. A third branch 
considers how information diffuses across social networks 
[4, 9, 34], particularly as the special conditions of disaster 
affect such diffusion [33, 37, 39]. 

Paper Objective & Background 
This paper sits as a contribution in the space that examines 
online socio-behavioral phenomena, and in particular how 
information is diffused across a population. However, we 
target a line of inquiry that includes the population of 
people who are known to have been in the geographical 
area of effect of a major disaster during its height. In this 
case, we examine those who were under the most serious 
threat before and during the 2012 Hurricane Sandy, and 
who used Twitter to post during that time. Specifically, this 
is an analysis of how people who are at risk from a natural 
hazard with an advanced warning period—a hurricane—
retweet information before, during, and after the event. 

First, we investigate whether those who are geographically 
vulnerable spread information differently than the general 
public—a public that was highly active on Twitter around 
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the world because of Hurricane Sandy’s catastrophic 
potential and intense media attention. In addition, when the 
geographically vulnerable population retweets, what 
information do they spread, and what and whose tweets do 
they propagate if they do so at all? We investigate whether 
the Twitter-based relationships are preexisting or if they are 
newly formed during the disaster, and if those new 
relationships persist after the storm. 

The objective of this line of inquiry is multi-fold. First, we 
want to continue to validate and deepen earlier findings by 
Starbird and Palen from the 2009 Red River Flood event 
that “locals” are more likely to retweet content that has 
“local utility,” and that non-locals are more likely to retweet 
the “abstract” of the event [37]. In 2009, hardly any 
emergency management groups were on Twitter—but 
things had radically changed between 2009 and 2012 as 
emergency management groups tried to develop an online 
presence, including more police and fire departments [18]. 
In addition, relatively few media outlets were on Twitter in 
2009, certainly as reflected in the Red River Flood data. In 
addition, the 2012 Sandy event had far more global 
attention as well as more extreme immediate consequences 
to a larger population than the US/Canadian Red River 
Flood threat of 2009—a critical event for Red River Valley 
locals, but incomparable to Sandy in terms of media reach. 
Furthermore, the number of active twitterers between 2009 
and 2012 increased about seven fold (30M to 200M).1 
Finally, the act of retweeting in 2009 was only a user 
innovation—it was not built into the software (and therefore 
not into the metadata of tweets). We want to confirm, as 
well as elaborate, the earlier local utility versus global 
interest framing under these changing and far more 
expansive conditions. 

Second, the Sandy-affected population is a desirable one to 
study because it is high density, where people are more 
likely to have enough relationships via Twitter within that 
geographical space to truly see what technology-abetted 
socio-behavioral phenomena—and particularly information 
diffusion—might be. The affected population also 
represents high variance in socio-economic status (SES) 
[12], though current research suggests that the affected 
populations in less central (and less affluent) areas might be 
underrepresented in the Twitter feed [35]. 

Such conditions, however, bring us closer to seeing if the 
empirical findings of geographical behavior that social 
science has previously revealed are echoed in the digital 
world. Specifically, do new relationships between people 
form during disasters in the online world? We expect that 
they do, but we do not know to what extent those 
relationships persist. We know from the disaster literature 
that in areas that experience seasonal hazards, the 

                                                             
1 See <http://bit.ly/1rJXKgA> and <http://bit.ly/1avywUF> 
for details. 

affiliations and connections made in prior events often (but 
not always) extend to subsequent events, and to the extent 
to which these connections can be used as a kind of 
“organizational memory” [2] is exactly what those who are 
increasingly attached to ideas of “community resilience” 
[14] are banking on. This research aims to provide baseline 
information—as well as some longitudinal information—
about an important event that will undoubtedly precede 
similar events in the same region. 

Furthermore to this point, if we find that there are retweet 
behaviors that are particular to the affected population, then 
we may be able to use those features to derive data in future 
disaster events more quickly, for both scientific and applied 
purposes, that could aid in emergency management. As 
Twitter volume increases, we need more sophisticated 
techniques beyond keyword filtering to find the people of 
interest—specifically those who are needing or supplying 
information about the impending hazard and its effects on 
the social and built environment [29]. 

Third, this research is the foundation for an important new 
area of research in crisis informatics: that of understanding 
how people who are geographically vulnerable during 
hazards make “protective decisions”—decisions to evacuate 
or to “shelter in place,” which may include collecting 
sufficient provisions. These decisions are made as part of a 
“web” of sources that are available to them; they do not rely 
on official sources or mandates alone [13, 24, 26, 27, 47]. 
Because people are increasingly turning toward online 
sources, including social media, we must understand social 
media behavior as much as possible. This research is 
necessarily scoped to information diffusion behaviors, but it 
is part of a line of inquiry about “protective decision-
making” by affected populations, especially as those 
activities vary across SES and other demographics [47]. 

THE 2012 HURRICANE SANDY EVENT (US LANDFALL) 
Hurricane Sandy made landfall on October 29, 2012 in 
southern New Jersey, affecting one of the most populated 

 

Figure 1. Path of Hurricane Sandy provided by the US 
National Weather Service via [12]. 



regions in the US that include New Jersey, New York, and 
Connecticut, with its impacts felt over a total of 24 States 
[12]. It dissipated by November 1. Prior to US landfall, it 
had passed through the Caribbean Sea, causing much 
damage to island nations before putting the entire US 
eastern seaboard under threat from the Gulf of Mexico and 
north into Canada (see Figure 1). 

In the US, the number of deaths directly attributed to the 
storm totaled 162 [12]. It was the second costliest hurricane 
to hit the US; damage was estimated to be US $6 billion 
[5]. Approximately 776,000 people were displaced [46] and 
650,000 homes were damaged or destroyed. 8.5 million 
people lost power as a result of the storm [5], and many 
were without power for weeks following. 

METHODS 

Data Collection Steps 
Data collection is part of our ongoing and committed effort 
to study disaster-related Twitter data. Using a four-node 
Cassandra cluster, our research group collects Twitter data 
24/7 in specialized software designed for high-volume 
Twitter data collection [3]. For the Sandy event, we started 
collecting data using the Streaming API on October 24 
2012, using the following keywords for the first round of 
data collection: frankenstorm, hurricane, 
hurricanesandy, perfectstorm, sandy, sandycam, 
stormporn, superstorm. This produced the keyword data 
set. In our disaster-related data collection procedures, we 
mitigate against potential bias in the Streaming API 
sampling [28] by using carefully chosen keywords and then 
focusing on specific subsets of users to gather a complete 
set of their tweets via the REST API. In particular here, we 
determined which users contributed to our keyword set, and 
then filtered again to those who had at least one gelocated 
tweet that fell within the geographical area of interest (see 
Figure 2). We then pulled the user streams—or what we 
call the contextual streams—for each of these geolocated 
users using the Twitter REST API. The reason we collect 
contextual streams is because we seek the fuller semantic 
context before and after a tweet that contains a found 
keyword. A “found” tweet based on a keyword search can 
have a different or enhanced meaning when one examines 
the surrounding tweets by the same user. Even when doing 
non-linguistic analysis as we do here, the full contextual 
streams remain important because the twitterers themselves 
presume contextual continuity across their tweets as they 
write them such that they do not necessarily invoke a 
disaster-relevant keyword each time they tweet. Therefore, 
our thinking is that the unit of analysis should not depend 
on isolated keyword-found tweets [29]. Note that the REST 
API returns up to 3200 of a user’s tweets from most recent 
to least; this usually allows examination of a user’s 
behavior before the hurricane as well. 

Creating the Data Sets 
We next describe all the data sets used in this paper, with a 
summary of main sets in Tables 1 and 2. The original raw 

keyword search spans a long period of time. For this study 
we bounded the set to Oct 24-Nov 30 to constrain it to the 
first weeks of the recovery. We refer to this as the Global 
Keyword dataset (see Table 1). Data before October 24 
preceded any reasonable predictions of where the hurricane 
would likely make US landfall. 

Next we worked in collaboration with meteorologists, 
social scientists, and GIS researchers at the National Center 
for Atmospheric Research to define the geographic 
bounding box of the region most affected by Sandy. The 
bounded area spans a great portion of the eastern seaboard 
(Figure 2), and intentionally covers inland locations, to 
which people closer to the coastline were likely to evacuate. 

Users who produced at least one geolocated tweet within 
the bounding box during the global keyword search time 
window (Oct 24-Nov 30) were designated as 
geographically (or “geo”) vulnerable users. Their tweets 
that were part of the keyword collection yield the Geo-
Vulnerable Keyword dataset. All tweets in the Global 
Keyword dataset produced by the geographically vulnerable 
users—including their non-geolocated tweets—are part of 
this set. 

With the set of local users known, we collected their 
contextual streams as described above. This is called the 
Geographically (“Geo”) Vulnerable Contextual dataset. 

We further isolate the Geo-Vulnerable Contextual dataset 
into four distinct 5-day time slices to capture the activity of 
the most geo-vulnerable users Geo-Before (Oct 15-19), 
Geo-During (Oct 27-31), Geo-Short-After (Nov 8-12), and 
Geo-Long-After the event (Oct 22-26) (see Table 2). We 
choose these time frames based on our knowledge of socio-
behavioral phenomena with respect to different phases of 
disaster events (drawing primarily from Powell [32]). In 
sum, Geo-Before captures the time before people in the 
geographical area of interest could know they would be 

 

Figure 2.  Bounding Box for Data Filtering. The bounding 
polygon is defined by the coordinates of its four corners:  

[-76.055416, 36.988536], [-76.416506, 39.084008], 
[-73.872974, 41.654353] & [-70.874853, 41.732875]). 



under threat but not so far beforehand that their social 
networks would be very different simply as a function of 
time. This gives us a before-disaster view of their behavior. 
The Geo-During captures the intense high warning, 
evacuation and storm impact periods, when people are 
making “protective decisions” and then living through the 
storm. The Geo-Short-After period captures our population 
as they move into the second week of recovery: some here 
could return home, many others could not, and some were 
able to start formulating plans for repair work. In other 
words, they have been able to take stock and have made 
initial post-disaster plans. The Geo-Long-After represents 
almost a full month after the event. Even more people have 
stabilized at this point. Many will have returned back to 
normal routines, but those who lost their homes are making 
other arrangements. 

These datasets will be used to internally compare different 
retweet patterns, and specifically to look at how social 
networks emerged in relation to the disaster and to what 
extent they persisted into the recovery. Because we are 
interested in comparing the retweeting behavior of geo-
vulnerable users within these various time periods, it was 
necessary to limit these four time slice sets to the unique 
users common to all the periods. We did this to be able to 
establish a baseline comparison from which to derive 
heuristics about tweeting behavior without additional 
variables for which to account. We note that we might be 
losing people in the Geo-During period if they did not 
evacuate and suffered from prolonged power outages (and 
therefore could not tweet), but this is a limitation of the 
study that we opted to work around to achieve stability in 
the analysis elsewhere. (Future work will extend the 
analyses to account for differences once baseline behaviors 
are uncovered.) With this approach, we found 7,988 
twitterers who contributed retweets to the contextual dataset 
in all four time periods. Limiting the time slice sets to only 
those overlapping users resulted in smaller sets as reported 
in Table 2. 

Three Retweet Counts 
As we are interested in retweet behavior in this analysis, we 
rely heavily on the retweet count metric. However, the 
Twitter retweet count field is not particularly useful, as for 
each retweet it indicates only its current turn in retweeting 
the original. For example, the tweet with a retweet count of 

5 is the 5th retweet of the original source. Thus, the Twitter 
metric maintains the retweet count of the original at the 
time of a particular retweet, and stores it associated with 
that retweet. We instead need to know how many times the 
original tweet was propagated overall within the particular 
time period under study. To compute that metric, we went 
through all the original tweets within a particular dataset, 
found all their retweets, and stored the latest/largest Twitter 
retweet count among those retweets as a measure of how 
many times the original tweets have been passed along. In 
the remainder of this paper, that is what we refer to as 
retweet count. 

Since the technique for acquiring the retweet count requires 
going through all the original tweets in a dataset, these 
counts are necessarily timeframe- and dataset-dependent. 
For the retweet count distribution analysis, we were 
interested in the activity for the Geo-During time frame as 
it definitively includes the period when the evacuation 
notices were issued and the storm made landfall. We 
computed three types of retweet counts within this time 
frame based on the Global Keyword and Geo-Vulnerable 
Keyword datasets, described in Table 3. Retweet counts are 
named based on the relationship between where the original 
tweet was sourced and the population it was retweeted by. 

ANALYSES & FINDINGS 
In this section, we have opted to include the findings 
uncovered in each progressive step to help the general 
reader follow the analytic rationale and argumentation. 

Geo-Vulnerable Retweet Networks for the 4 Time Slices 

Time Evolution of Retweet Networks 
For the four time slices with in-common users (Geo-Before, 
Geo-During, Geo-Short-After, Geo-Long After), we 
collected the user ids of those who generated the retweets as 
well as the user ids of the authors of the original tweets that 
were being retweeted. Retweeting behavior can be seen to 
signify some kind of loosely-connected social 
relationship—at a minimum, the retwitterer sees value in 
the information or in the original twitterer. These 
relationships can be represented as a directed graph, with 
the retwitterers as source nodes and original twitterers as 
target nodes, and the directed edges (from source to target) 
representing the retweets. Thus, the four time slice datasets 

DATA SET NAME & 
TIME SPAN 

NUMBER OF 
TWEETS 

NUMBER OF 
USERS 

Global Keyword  
(Oct 24-Nov 30) 16.2M 5.9M 

Geographically  (“Geo”) 
Vulnerable Keyword  
(Oct 24-Nov 30) 

224.8K 28.5K 

Geographically (“Geo”) 
Vulnerable Contextual  
(Oct 13-Nov 30) 

5.6M 28.5K  

Table 1. Dataset Names and Descriptions. 

DATA SET 
NAME DATES (2012) RETWEET VOLUME FOR 

IN-COMMON TWITTERS 

IN-COMMON TWITTERERS ACROSS ALL TIMES SLICES: 7988 

Geo-Before Oct 15-Oct 19 64,423 

Geo-During Oct 27-Oct 31 84,597 

Geo-Short-After Nov 8-Nov 12 55,855 

Geo-Long-After Nov 22-Nov 26 50,425 

Table 2. Retweet volume for in-common Twitterers 
across all time slices.  



produce four distinct directed social networks, with the 
common core of overlapping retwitterers combined with the 
original tweet authors who are specific to the time period as 
nodes. These four networks are discrete time slices in the 
temporal evolution of the single retweet network. Next, we 
compare various structural aspects of the four networks to 
establish how the web of social relations changed during 
disaster in comparison to pre- and post-disaster activity. 

Network Size & Density 
The first difference in the four time sliced networks is the 
sheer size. Table 4 illustrates the size and density measures 
for the four networks. The Geo-During network is 
considerably larger, with more nodes and edges, than the 
prior and later slices. The larger size of the network 
corresponds to the higher volume of retweeting activity we 
observed during disaster, which is not so surprising 
considering that the underlying dataset was constructed by 
collecting the contextual streams of geo-vulnerable users 
who were found by searching on the hurricane-related 
keywords.  

On the one hand, though the geo-vulnerable users were 
found through a keyword search, in this analysis we use 
their entire contextual tweet streams during the four time 
slices, which provide the most accurate measure of how 
much they tweeted, even when their tweets do not contain 
keyword terms. The higher volume of retweet activity 
during the hurricane suggests that the geo-vulnerable 
population tends to propagate social media posts more often 
in disaster (even if the posts do not contain event-related 
keywords). 

The relative size of the largest connected component can 
serve as a proxy for how densely interconnected the 
network is. The largest weakly connected component of the 
Geo-During network encapsulates 92.88% of all its nodes 
and an impressive 96.34% of the edges—a considerably 
larger fraction than for the other three time periods (see 
Table 4). Moreover, if we construct completely comparable 
“internal” versions of the four networks by excluding the 

original tweet authors who are not also among the 7,988 
overlapping users and thus retaining only the retweets 
between the core users, the networks show a similar trend. 
The “internal” version of Geo-During has the largest 
weakly connected component, with the fractional size 
considerably larger than the internal networks for other time 
slices. Therefore, we see higher density in the During 
period even in the internal networks, which allow the 
analysis to focus solely on the retweet dynamics among the 
overlapping users to avoid the varying number of external 
original tweet authors (though this method does not control 
for the underlying dynamic of varying retweet volume). 
The higher density suggests that the retweet activity of geo-
vulnerable twitterers during the disaster connects multiple 
subnetworks, thereby constructing a more interconnected, 
dense social network. 

The reciprocity of directed links does not contribute much 
to the higher network density of Geo-During, as it is 
consistently low for all four networks—about 0.1%. 

Degree Distributions 
An even more canonical metric for measuring the 
difference in structure of different networks is their degree 
distribution. In this directed case, we are specifically 
interested in the out-degree, which represents the number of 
original authors whose tweets the in-common retwitterers 
have retweeted. 

All the distributions in Figure 3 are long-tailed, as is 
common in degree distributions of real-world complex 
networks [8, 24]. However, some of the distributions are 
prone to rarer events than others. For example, the Geo-
Before network has the highest out-degree of 181. Thus, an 
in-common retwitterer in this network (@BKdotNet) has 
retweeted tweets from 181 authors in the 5 days of interest 
before the event (in-degree=0). Similarly, and somewhat 
more impressively, a user (@LaborIrishDem) in the Geo-
During network retweeted tweets from 192 authors during 
the 5 days of the event (in-degree=0). In contrast, the Geo-
Short-After and Geo-Long-After networks have maximum 
out-degrees of 134 and 97, respectively (in-degree=0 for 
both). Moreover, the out-degree distributions for all the 
time slices are power-law-like only in the tail (out-
degree>10), but not the head of the distribution.  This 

RETWEET COUNT NAME DESCRIPTION 

1. Global/Geo-Vulnerable  

Originating tweets come from 
the Global Keyword dataset 
and are retweeted within the 
Geo-Vulnerable Keyword 
dataset 

2. Geo-Vulnerable/Geo-
Vulnerable 

Originating tweets come from 
the Geo-Vulnerable Keyword 
data set and are retweeted 
within the Geo-Vulnerable-
Keyword dataset 

3. Global/Global  

Originating tweets come from 
the Global Keyword data set 
and are retweeted within the 
Global Keyword data set 

Table 3. Glossary of Retweet Counts. 

 Geo-
Before 

Geo-
During 

Short-
After 

Geo-
Long-
After 

Network size 
(nodes, edges) 

49,413 
64,423 

56,527 
84,597 

46,040 
55,855 

42,829 
50,425 

Weakly 
Connected 
components 

1,465 935 1,728 2,047 

Fraction in 
largest 
component 
(nodes, edges) 

87.61% 
92.76% 

92.88% 
96.34% 

84.10% 
89.97% 

81.28% 
88.15% 

Table 4. Network size and density. (Fraction of nodes stat. 
sig. with Chi-square=3304.55, p<0.0001, fraction of edges 

stat. sig. with Chi-square=3664.98, p<0.0001). 



suggests that the core users who remained active 
retwitterers through all the stages of the event tended to 
retweet tweets of many authors. This is especially true for 
the Geo-During network, where the linear fit to the loglog 
distribution is the least steep of all the time slices, 
decreasing less rapidly and thus pushing more of the 
distribution’s density away from the origin. Hence, the core 
in-common users, in aggregate, tended to retweet 
information from a greater variety of sources during the 
disaster than before or after. 

The in-degree here represents how popular various original 
authors were in the retweet activity of the core overlapping 
users. For example, the Geo-Before network has the highest 
in-degree of 306. Here @BarackObama was retweeted by 
306 different in-common users in the 5 days of interest 
before the event. This node’s out-degree is zero, since we 
do not have the data on the retweet behavior of the original 
authors unless they are also one of the in-common 
retwitterers (see Table 6 for the intersection of the two). 
Similarly, but even more impressively, @MikeBloomberg 
—the New York city mayor at the time—was retweeted by 
420 different core users during the 5 days of the event (out-
degree=0). The author retweeted by the highest number of 
in-common users in the Geo-Short-After and Geo-Long-
After networks is @XSTROLOGY (in-degree of 167 and 
154, respectively; out-degree of 0 for both). 

Users with high degree—many links—are often called 
“hubs” and are an important feature of social networks. The 
Geo-During network has more hubs based on in-degree, 

while the Geo-Before, Geo-Short-After, and Geo-Long-
After networks have fewer of them. Figure 4 illustrates the 
proportion of nodes for each network that have 100 links or 
more, for in- and out-degree. The differences for the out-
degree are less dramatic, but the Geo-Before, and especially 
Geo-During have more hubs than the later time networks. 
This suggests that among the users who appear across all 
datasets, there was more hub-like activity during the 
disaster period—retweeting from multiple sources and 
being retweeted by multiple retwitterers—and thus 
connecting many subnetworks. 

Network Mixing Patterns 
More insight into understanding and comparing network 
structure can be gleaned from “mixing patterns,” which 
refers to what type of nodes tend to connect to each other. 
“Degree assortativity” is measured by a network-level 
coefficient quantifying the strength of the relationship 
between the degree of the network’s nodes and degree of 
their neighbors. For our networks, which do not have data 
on the retweet activity of original authors unless they are 
also in-common retwitterers, we are most interested in out-
in degree assortativity. This metric represents the 
correlation between the out-degree of a node and the 
average in-degree of its neighbors—tweets of how many 
authors the user retweeted and how many users, on average, 
retweeted the tweets of those original authors. The out-in 
degree assortativity for all the time sliced networks is low, 
signifying, on average, a weak relationship between each 
node’s degree and degree of its neighbors. The out-in 
degree assortativity of all the networks is also weakly 

Geo-Before 

 

Geo-During 

 
Geo-After 

 

Geo-Long-After 

 

Figure 3. Loglog of out-degree distribution with linear fit to the tail (x>10). 



negative, suggesting that nodes with high out-degree are on 
average slightly more likely to be connected to the nodes 
with low in-degree. This implies that for all four networks, 
when users retweet many sources, those sources are slightly 
more likely to be the ones that have not been retweeted very 
often by the in-common retwitterers. All the patterns above 
also hold if we remove all the nodes with an out-degree of 
one; we do this to verify that one-off retwitterers of popular 
memes (high in-degree) do not produce the observed 
disassortativity. This disassortative relationship is weakest 
for the Geo-During network, suggesting that during 
disaster, the geo-vulnerable users who retweet many 
different sources are slightly more likely to retweet more 
popular sources than before or after an event. The fact that 
popularity plays a role in retweet activity in disaster is 
somewhat intuitive, as retweeting can be seen to be about 
trust (in either content or here in the authority of the author 
as confirmed by her/his popularity), and rarely is 
trustworthiness more important than in disaster. We will 
attempt to separate the part played by content utility in this 
process from that of author popularity later in the paper.  

We can disaggregate the concept of out-in degree 
assortativity by looking at the average neighbor 
connectivity for each node (see Figure 5). The sub-figures 
illustrate the average in-degree of neighbors (y-axis) for the 
node with out-degree k (x-axis).  

Figure 5 shows a less pronounced negative relationship 
between node out-degrees and average in-degrees of their 
neighbors for the Geo-During network, supporting our 
assertion of slightly more frequent hub-to-hub retweeting 
(out-degree hub retweeting in-degree hubs). For example, 
@AthenasAika—the user represented by the highest point 
on the Geo-During graph—has retweeted 106 sources who 
on average have been retweeted 43.70 times. This user 
retweeted such high-degree hubs as @BarackObama, 
@MikeBloomberg, and other national and local authorities 
and media outlets. 

Transitivity 
A relation is transitive if when A relates to B, and B relates 
to C, A also relates to C. Thus transitivity captures the idea 
of “a friend of a friend is a friend,” and specific to 
retweeting information, “a source of my source is also a 
source.” In the directed case, the most meaningful network-
level measure of transitivity is the proportion of transitive 
triples derived from the triadic census as defined by 
Holland and Leinhardt [16, 43]. We corrected this measure 
by excluding the few transitive triples in which a user 
retweets two authoritative sources that retweet each other. 
Thus, the corrected metric excludes the configurations that 
relate to authority-based broadcasting and retains only the 
transitive triple configurations associated with community-
building retweeting, which is a typical understanding of 
transitivity.  This corrected proportion, while rather low for 
all four time sliced networks, is the highest for the Geo-
During network. The Geo-After has slightly higher 
corrected proportion of transitive triples than Geo-Before 
and Geo-Long-After, but still lower than Geo-During. 
Therefore, the higher proportion of transitive triples in Geo-
During, suggests that when retweeting communities are 
likely to form, they are most likely to form during the event 
and persist to some degree immediately after (the difference 
is statistically significant with χ2=83.29, p<0.0001). 

The retweet behavior displays low transitivity because 
retweeting need not be limited by the boundaries of users’ 
following networks, which are themselves low-transitivity 
[25] due to their directional nature and low rates of 
following reciprocity [23]. 

Important Users  
We further explored the differences between the four time 
sliced retweet networks by establishing each network’s 
important users, with the specific focus on the influential 
sources (See Table 5). PageRank—a variant of eigenvector 
centrality—has at its core a notion that the importance of a 
node can be judged by looking at the importance of nodes 
that link to it. Thus, this metric is especially well-suited for 

 
Figure 4.  Hub percentage for each network. (Stat. sig. for in-

degree with  χ2=19.53, p<0.001). 

Geo-Before Geo-During 

BarackObama 
MensHumor 
XSTROLOGY 
billmaher 
WomensHumor 
azizansari 
FillWerrell 

 

MikeBloomberg 
GovChristie 
LolOhComedy 
MTAInsider 
NYCMayorsOffice 
ElBloombito 
NYGovCuomo 

 

Geo-After Geo-Long-After 

XSTROLOGY 
GovChristie 
UberFacts 
MensHumor 
ElBloombito 
WhatTheFFacts 
HuffingtonPost 

 

XSTROLOGY 
UberFacts 
HuffingtonPost 
MensHumor 
BenSavage 
SportsCenter 
WhatTheFFacts 

 

Table 5.  Nodes with the highest PageRank. 



finding the influential nodes based on their incoming edges, 
like the important original tweet authors. Based on this 
metric, the majority of the most important nodes of the 
Geo-During network tend to be local government 
authorities and the media, while those accounts are much 
less represented in the “most important nodes” list of the 
other time slices. 

The strong presence of local government and media sources 
in the list for the Geo-During network is consistent with our 
earlier observation of more in-degree hubs in this network. 

Geographic Patterns of Retweet Activity 

Proportion of Geo-Vulnerable Sources within the Four Time 
Sliced Networks 
We are interested in the geographic patterns of the retweet 
activity. One of the ways to glean the presence of such 
patterns is to calculate the proportion of geo-vulnerable 
nodes in the time sliced networks. Remember that the in-
common retwitterers around which the time slice networks 
were constructed are all geo-vulnerable, since we extracted 
them from the Geo-Vulnerable Contextual dataset. Thus, 
the only nodes with potential for different locations are the 
authors of the original tweets.  

Table 6 indicates that for each of the time sliced networks, 
there is an overlap between the authors of the original 
tweets and the retweet authors. Thus, a small portion of the 
core retwitterers play both roles: authority figures whose 

tweets are propagated by others, and propagators of 
information. 

All the time sliced networks also display a consistently 
higher proportion of geo-vulnerable original tweet authors 
than non-geo-vulnerable sources. Such consistency suggests 
that the geo-vulnerable retwitterers are more likely to 
propagate messages created by other geo-vulnerable users. 

This is especially the case in the time of disaster. According 
to Table 6, the percentage of geo-vulnerable source authors 
is rather consistent among the Geo-Before, Geo-Short-After, 
and Geo-Long-After networks (61-62%). However, in the 
Geo-During network this percentage of geo-vulnerable 
source authorship goes up to 68%. 

Proportion of the Geo-Vulnerable Source Tweets  
Going to the tweet-level analysis of location brings some 
challenges. First, only a small number of tweets are 
geolocated (1.1% in Global Keyword dataset) and an even 
smaller portion is located within the bounding box of the 
event (0.4%). Moreover, our analysis indicates that retweets 
are never geolocated; that is, the location of the person 
performing the retweet is not captured. Instead, Twitter 
passes along the geotag (if present) of the original tweet 
(the tweet being retweeted). Indeed, if you attempt to load a 
retweet in a web browser, Twitter simply redirects you to 
the original tweet. These “features” make location analysis 
based on the retweet’s coordinates impossible. 

Geo-Before 

 

Geo-During 

 
Geo-After 

 

Geo-Long-After 

 

Figure 5. Average neighbor in-degree vs. node out-degree. 



On the other hand, recall that we consider users to be geo-
vulnerable if they produce at least one geotagged tweet 
within the boundary in the time frame of interest. This 
procedure produces many more tweets whose authors are 
considered geo-vulnerable than the actual tweets with geo-
vulnerable geographical coordinates—and this larger set 
now includes retweets. Thus, in the rest of this analysis we 
consider tweets to be in the geographical area of interest if 
they were authored by a geo-vulnerable twitterer. 

The geo-vulnerable twitterers in both the Geo-Vulnerable 
Contextual and Geo-Vulnerable Keyword dataset retweeted 
more tweets from geo-vulnerable authors than from non-
geo-vulnerable. This is true for both overall time period of 
interest—Oct 13-Nov 30—and the Geo-During timeframe. 
For the Geo-Vulnerable Keyword dataset, the percentage 
remained essentially unchanged regardless of the time 
period (Figure 6). For Geo-Vulnerable Contextual dataset, 
however, the percentage of original tweets by geo-
vulnerable authors increased noticeably during the disaster 
time period. This suggests that during the disaster, the 
Twitter conversations of geo-vulnerable authors tend to 
favor the local sources more strongly.  

Since Geo-Vulnerable Contextual dataset contains all the 
tweets of the geo-vulnerable users, some discussions and 
retweets might be unrelated to Hurricane Sandy, especially 
on the longer time frame. During the disaster, it is expected 
that more of the contextual tweets would be focused on 
Sandy and related local issues, making the percentage of 
original tweets by geo-vulnerable authors higher. The 
higher fraction of source tweets by the geo-vulnerable 
authors in the more on-topic Geo-Vulnerable Keyword set 
is consistent with the above intuition, supporting a 
hypothesis that the disaster-related geo-vulnerable retweet 
activity tends to favor the local sources more strongly. 

Retweet Count Distributions of Various Populations 
Now we turn to the three retweet count metrics we 
explained earlier, to see in another form how Global and 
Geo-Vulnerable populations retweet each other. 

Retweet Distributions: The Geo-Vulnerable Retweeting 
Other Geo-Vulnerable Tweets vs Global Users Retweeting 
Global Tweets 
The geographic patterns discussed above suggest that we 
might glean some insights into the retweeting behavior of 
the most affected geo-vulnerable twitterers by comparing 
their retweet count distributions to those of global 
twitterers. These distributions show how frequently we 
observe the tweets with a particular retweet count. We do 
not include tweets with a retweet count of 0 here, since 
though these tweets might be contentful, they do not 
contribute to the collective situational awareness because of 
their very limited audience, which is mostly confined to a 
twitterer’s followers.  

The distribution of Geo-Vulnerable/Geo-Vulnerable retweet 
counts on loglog scale looks significantly different from the 
distribution of Global/Global retweet count (Figure 7). The 
negative slope of the linear fit to the retweet frequencies of 
the former is less steep than that of the latter, producing a 
more heavy-tailed distribution with more density dispersing 
from the origin. The histogram inset in Figure 7 makes this 

 
Geo-

Before 
Geo-

During 

Geo-
Short-
After 

Geo-
Long-
After 

Original 
Twitterers 41,755 49,017 38,326 35,094 

Overlap with in-
common 
Twitterers 

330 478 274 253 

Geolocated 
Original 
Twitterers 

1,499 1,838 1,477 1,380 

Geo-Vulnerable 
Original 
Twitterers 

62.58% 68.44% 62.42% 61.16% 

Table 6. Source tweet author details. (Fraction of geo-
vulnerable sources stat. sig. with χ2=23.49, p<0.0001). 

 

Figure 6. Percentage of source tweets in geo area of 
interest. (Stat. sig. with  χ2=827.11, p<0.0001) 

 

Figure 7. Retweet count distributions. 



more visually apparent: the Geo-Vulnerable/Geo-
Vulnerable distribution shows more density at retweet 
counts greater than 10, suggesting that the geo-vulnerable 
tweets get retweeted 10 or more times by the geo-
vulnerable users more frequently than the global tweets get 
retweeted 10 or more times by all users. Specifically, we 
can see that the tweets with 10-80 retweets are visibly over-
represented in Geo-Vulnerable/Geo-Vulnerable 
distribution, compared to the Global/Global histogram. 

Thus, it seems that certain geo-vulnerable tweets might 
offer something especially useful to the discussion, making 
them more appealing to the geo-vulnerable users, and thus 
more retweeted. This makes the geo-vulnerable tweets with 
higher retweet counts (at 10-80 retweets) over-represented 
in the retweet count distributions for the geo-vulnerable 
users. This supports earlier findings from a smaller disaster 
much earlier in Twitter’s life: tweets from the geo-
vulnerable might be more useful for other geo-vulnerable 
users. Therefore, the geographic similarity might help us 
derive the most useful tweets. However, the geolocated 
tweets comprise only a small percentage of all the tweets 
(about 1.1%) and geo-vulnerable tweets make up an even 
smaller portion (0.4%). Hence it would be very helpful to 
identify the locally useful tweets without relying on their 
locality as an identifying marker, which we discuss in 
further detail next. 

Retweet Count Distributions: The Geo-Vulnerable 
Retweeting Global Tweets vs Global Users Retweeting 
Global Tweets 
To move away from using location as an identifying 
characteristic, we can look at the distributions of geo-
vulnerable users retweeting tweets from the global keyword 
data set, not just the geo-vulnerable tweets. Comparing the 
loglog distribution of Global/Geo-Vulnerable retweet 
counts to the Global/Global distribution, we again observe 
a less steep linear fit for the former, suggesting that this 
distribution decreases more slowly and thus produces more 
rare events—tweets with larger retweet counts (Figure 8). 

The fact that this distribution is more heavy-tailed is more 
visually obvious from the inset of Figure 8, where we see 
the Global/Geo-Vulnerable histogram diffuse density away 
from the origin and over-represent tweets with higher 
retweet counts in comparison to the Global/Global 
distribution. Specifically, the tweets with 10-80 retweets are 
again visibly over-represented, even to the higher degree 
than we observed for geo-vulnerable users propagating geo-
vulnerable tweets. 

In summary, for all the retweet counts, the retweet patterns 
of the geo-vulnerable users seem to be quite different from 
the global users (whether the geo-vulnerable users are 
retweeting the geo-vulnerable or global sources). Figure 9 
provides the overview of these differences. 

Thus, we can conclude that the tweets that end up with the 
higher retweet counts and hence over-represent those 
counts in the distributions are propagated by the geo-
vulnerable users more, not necessarily because of their 
locality but because of some other aspect of the tweets. 
There are many aspects of the tweet that might motivate 
geo-vulnerable users to retweet it—informational utility and 
social conformity are two obvious contenders, especially 
from the perspective of retweet as an informal 
recommendation system (either for content or its author) 
[40]. Though we cannot fully disentangle these motivations 
in this analysis, earlier research [37] suggests that local 
utility of the content is likely to play a role in these tweets 
being retweeted more by geo-vulnerable users than we 
would expect from the retweeting patterns of Twitter’s 
general population of users.  

Content 

Overrepresented tweets in the Global/Geo-Vulnerable count 
To test the hypothesis that certain tweets gain more 
retweets based on usefulness of their content to the 
geographically-vulnerable, we perform a content analysis of 
the tweets. We selected a uniform random sample of all the 
tweets with Global/Geo-Vulnerable retweet count larger 
than zero (17K), since the number of tweets was too large 
to manually code for the presence of local utility. We 
focused on this retweet count because the global source of 

 

Figure 8. Retweet count distributions. 

 

Figure 9. Fraction of tweets with 1-10, 11-80, and >80 
retweets (Stat. sig, with χ2 = 18876.38, p<0.00001).  



the tweets ensures that over-representation of certain tweets 
is not due to their geographic origin.  

We divided the sample tweets into three groups:  10 tweets 
and below, 11-80 tweets, and 81 and up. We qualitatively 
coded the three samples with a simple binary flag indicating 
whether or not the tweet contains locally useful 
information. We considered the content to be locally useful 
if it provided practical information on the state of affairs, 
such as exact weather and path of the hurricane prediction, 
notification of road and school closures, public 
transportation announcements, declaration of state of 
emergency, concrete opportunities to help in the recovery 
and so on. We distinguished those specific and locally-
applicable tweets from the general expression of fear, awe, 
and disbelief and from text or images that provide a large-
scale overview of the event. Table 7 summarizes the 
findings from this content analysis. 

Tweets in all three samples ranged in their content from the 
local utility that aids in situational awareness to the broad 
appeal of the bird’s eye view “abstract” of the event [37], 
including jokes and other memes. However, the 11-80 
retweet subsample included much higher proportion of the 
tweets with locally-useful, actionable information compared 
to the other two samples. Clearly, the boundary cutoffs 
between subsamples are somewhat arbitrary, as all the 
samples had a varied mixture of content with local utility 
and broad appeal, and would be better represented by a 
continuum rather than discrete thresholds. However, these 
thresholds we empirically obtained from the retweet count 
distributions offer us a reasonable starting point for finding 
locally-useful tweets where they are most highly 
concentrated. 

We did not find a one-to-one direct relationship between 
the local utility and retweet count, as evidenced by 
numerous locally-useful tweets we found in 1-10 retweet 
category. Our basic content analysis suggests that there 
might be some non-textual features that impede or promote 
a tweet’s retweetability [41]. For example, many locally-
useful tweets in the 1-10 retweet sample were hard to read 
due to overabundance of mentions. On the other hand, the 
fact that retweet count distributions have considerable 
densities above the retweet count of 80 while the local 
utility decreases at this point, suggest that other factors, 
such as author popularity, social conformity, and imitation 
might be in play. The data concur: 93.58% of the original 

authors of tweets with more than 80 retweets are popular 
twitterers, as operationalized by having a thousand 
followers or more (a statistically significantly higher 
proportion than for tweets with 11-80 retweets). Qualitative 
analysis of over-80-retweet tweets shows that celebrities 
and the media have a very strong presence among authors. 
In future work, we plan to explore how various non-content 
features affect the retweet potential for the tweets with local 
utility, and conversely what structural features characterize 
the well-retweeted locally-useful and non-useful tweets. 

CONCLUSION 
The purpose of this research is explain how Twitter activity 
by those who are geographically affected by a disaster 
differs or not from the general global reaction. If there are 
differences, then we know that victims turn to social media 
for different reasons than the general population. To 
address these questions, we had to carefully manage a large 
set of data, comparing retweet behavior across populations 
and time slices, which can make written explanations 
difficult, but it makes results more dependable.  

In summary, our major findings are that geographically 
vulnerable twitterers propagate more information during the 
disaster period than before or after. They can also be both 
the sources and propagators of information.  In doing this, 
geographically vulnerable twitterers have denser 
interconnected retweet networks during disasters than 
before or after. Social network “hubs,” especially those 
based on in-degree, are present in higher numbers during 
the disaster period than before or after. It also appears that 
during the disaster period, local government authorities and 
the media are the most important nodes in comparison to 
their presence before or after the disaster.  

The geographically vulnerable are more likely to propagate 
tweets from other geographically vulnerable users at any 
time, but this is especially prominent in disaster. 

In addition, the geo-vulnerable retweet quite differently 
than the global population of twitterers who are interested 
in the same event. They propagate certain tweets 
considerably more than the general Twitter population, 
creating retweet distributions where rare events are more 
likely. Specifically, tweets that acquire 10-80 retweets 
make up a higher fraction of the total retweet activity of the 
geo-vulnerable population, and we see from qualitative 
analysis of these tweets that the geo-vulnerable select from 
the global twitterverse and retweet more are more likely to 
have some kind of local utility. 

Though the popularity of social media is hard to deny, some 
still question its impact and import during disaster response 
because resource allocation decisions, governance policy, 
and even life-or-death actions are at issue.  This research 
shows that those who are in the geographic area of effect 
relate to social media content differently once a disaster 
strikes, and they relate to it differently from the general 
population that attends to the event. They tend to propagate 

 1-10 
Retweets 

11-80 
Retweets 

>80 Retweets 

Tweets 11,518 3,503 1,885 

Sample 1,147 353 191 

% with Local Utility 38.92% 54.83% 36.84% 

Table 7. Proportion of tweets with locally useful content in 
Global/Geo-Vulnerable retweet samples (Fraction with local 

utility stat. sig. with χ2=30.11, p<0.0001). 



information from other geographically-vulnerable people, 
and focus the bulk of their retweeting activity on the tweets 
containing locally-useful information. 

These findings provide evidence for moving forward on 
practice- and policy-making initiatives that address the role 
of social media in disaster emergency response. Technology 
designers might also be influenced by the needs of 
geographical neighbors when we think about future social 
computing innovations. Finally, those who analyze social 
media data for basic and applied science purposes may 
employ some of these findings to create sampling 
techniques to more quickly zero in on the content and 
propagators in the “big data” of crisis response. 
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