
Insights
 → Visualizations allow 
people to readily analyze 
and communicate data. 
However, many common 
visualization designs lead to 
engaging imagery but false 
conclusions. 

 → By understanding what 
people see when they look 
at a visualization, we can 
design visualizations that 
support more accurate 
data analysis and avoid 
unnecessary biases.

to help people see what matters. This 
article reviews common visualization 
practices that may inhibit effective 
analysis, why these designs are 
problematic, and how to avoid them. 
The discussion illustrates a need to 
better understand how visualizations 
can support flexible and accurate data 
analysis while mitigating potential 
sources of bias.

Glancing at the bar chart in Figure 
1 will likely convince you that one 
method performs twice as well as the 
other. However, this visualization is 
misleading: The true difference between 
methods is only 5 percent. Talks and 
articles frequently feature flashy 
visualizations like this—visualizations 

Data visualizations allow people to 
readily explore and communicate 
knowledge drawn from data. 
Visualization methods range from 
standard scatterplots and line graphs 
to intricate interactive systems for 
analyzing large data volumes at a glance. 
But how can we craft visualizations 
that effectively communicate the right 
information from our data? What 
aspects of data and design need to 
come together to develop accurate 
insights? The answer lies in the way 
we see the world: People use their 
visual and cognitive systems (i.e., our 
eyes and brain) to extract meaning 
from visualized data. However, flashy 
visualizations are not always optimized 
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that, despite the data’s simplicity, break 
several rules for honest and effective 
data visualization, exaggerating the 
differences between methods and 
calling into question the statistical 
conclusions drawn from the results. Are 
these violations nefarious? No. Are they 
done with the intention of making a cool 
graph? Probably. Do they lie with that 
data? Yes.

The mistakes made in this 
visualization—unnecessary use of 3D, 
a lack of uncertainty information, axes 
starting above zero—are common 
throughout the scientific world. 
People often justify these designs 
with comments like “I have learned 
to read these charts correctly” or 

“If I label my axes, no one will make 
that mistake.” While there are small 
individual differences in how we 
interpret visualizations, everyone has 
the same visual system, is subject to the 
same visual biases, and can be fooled 
by the same visual illusions. And we 
are only fooling ourselves if we assume 
differently.

The choice to use flashy rather than 
accurate data visualizations is growing 
increasingly problematic. Data provides 
a crucial foundation for the decisions 
on which our society operates. It allows 
us to characterize the world in new 
ways and drive innovative discoveries. 
While algorithms and computational 
tools provide powerful mechanisms 

for harnessing data, interpretation 
and decision making are ultimately 
done by people. People bring context, 
expertise, and situational awareness to 
analyses that are not easily integrated 
into databases but that are critical to 
disentangling the signal from the noise. 
How can we as developers and data 
scientists enable access to the right 
information to support effective data 
analysis and communication?

The answer lies in understanding 
what people actually see in data 
visualizations. Our sense of sight 
provides us with a well-tuned pattern-
recognition system. Centuries of 
evolution have refined our visual 
abilities to rapidly process large 
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This trade-off between flexibility 
and precision is often the primary 
deciding factor for determining when 
a visualization is necessary: If access 
to the data underlying a statistic or 
prediction might change our decisions 
about that data, we should use a 
visualization.

Crafting visualizations generally 
follows a systematic process: clean the 
data, precompute relevant information, 
map that information to different 
visual channels (e.g., position, size, 
color), and integrate interaction and 
other details where appropriate. By 
combining a small number of channels, 
visualization designers can create 
intricate interactive systems that reveal 
patterns in large data collections at a 
glance. Choosing among these channels, 
while simple in concept, is where 
most visualizations go wrong. While 
many combinations create flashy and 
engaging graphics, these approaches 
may inadvertently obscure or even 
misrepresent data in ways that lead 
to flawed and biased interpretations. 
Misleading visualizations appear 
in our news reports, creating public 
mistrust in data, in scientific results, 
leading to incorrect theories, and even 
in Congress, where policymakers find 
themselves in conflict over data. So 
how do we avoid faulty visualizations? 
Science still cannot fully answer that 
question, but we can start by avoiding 
well-studied design pitfalls.

GETTING OVER THE RAINBOW
Many visualizations, such as 
geographic choropleth maps, eye-
tracking heatmaps, and scalar field 
visualizations, represent data using 

Here, we identify several (sometimes 
controversial) visualization design 
choices that can lead to potentially 
erroneous conclusions and offer 
solutions to overcome them, focusing 
on color choice, animation, axis scales, 
unnecessary 3D, and privileging 
statistics over data.

A PRIMER IN VISUALIZATION: 
WHEN, WHY, AND HOW
Visualizations are powerful tools 
for discovering and communicating 
insights in data. However, visualizations 
are not always necessary—people 
are not optimized to compute precise 
statistical quantities from abstract 
images. Many analysis problems can 
be solved with direct queries and 
algorithmic methods. For example, 
statistical models allow companies to 
optimize shipping procedures. Purely 
computational approaches scale further 
and more accurately estimate precise 
quantities than people. If you can distill 
what you need to know about your data 
into one computable value, you likely do 
not need a visualization.

However, visualizations often 
prove robust where statistics fall short. 
Visualizations take advantage of the 
universality of visual structure: We 
can see the shapes these data points 
make even when we cannot directly 
enumerate them. Take, for example, 
Anscombe’s Quartet: four datasets with 
identical means, variance, correlation, 
and regressions (Figure 2). While these 
datasets appear statistically identical, 
visualizing them shows substantial 
qualitative differences in their 
structure. Our sight detects these high-
level structures within 100 milliseconds 
of looking at a graph [1], far faster than 
the blink of an eye.

How do you decide when to visualize 
and when to compute? Factors such 
as uncertainty (how well do statistics 
represent the data?), transparency (what 
does the underlying data look like?), 
context (what additional knowledge 
could inform analysis and decision 
making?), scale (how many distinct 
quantities do we need to evaluate?), 
exposition (what story must the data 
tell?), and purpose (do we know what 
we are looking for?) all help determine 
when visualizations are valuable. For 
example, if you cannot readily quantify 
(or even know) what data properties 
matter, you can use visualizations to 
synthesize a diverse set of conclusions. 

amounts of complex information. We 
can find a tiger in long grass or ripe 
red berries in a bush. We can detect 
whether people are approaching or 
moving away. Visualizations leverage 
the high-throughput processing 
capabilities offered by our sense of 
sight to help people make sense of 
data. If we understand the patterns 
and information people extract from a 
visualization, we can enable people to 
draw informed conclusions from data at 
a glance.

Visualizations must be crafted 
with care, as we are easily tricked 
into seeing patterns in data that are 
not actually present, such as the 50 
percent difference in Figure 1. While 
some visual biases and illusions are 
difficult to avoid, by understanding how 
information is transformed between 
the visualization and the knowledge 
it creates, we can encourage designs 
that help people better communicate, 
and ultimately understand, data. 
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Figure 1. 3D marks, truncated axes, and other 
design choices create stylish visualizations; 
however, these visualizations are at best 
difficult to read and at worst lead to incorrect 
conclusions. Avoiding known bad practices 
leads to more honest and accurate data 
communication.
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Figure 2. The four datasets of Anscombe’s 
Quartet share the same basic descriptive 
statistics, but visualizing these datasets 
reveals four qualitatively different 
structures.



a familiar red-yellow-green-blue 
scheme referred to as the rainbow 
colormap. A longtime default of tools 
like MatLab, this colormap creates 
bright and engaging imagery that has 
led to incorrect conclusions and even 
retracted papers in top scientific venues. 
Many insist that the rainbow colormap 
allows them to interpret more variations 
in their data, as they have “learned to 
read the colormap correctly.” However, 
a number of studies have proven that 
rainbow colormaps distort data even 
for people who use them daily. For 
example, researchers at Harvard 
worked with cardiologists who used 
rainbow colormaps to diagnose arterial 
disease [2]. Despite experts’ insistence 
that they could accurately interpret 
rainbows, switching from rainbows to 
more mundane colors increased experts’ 
abilities to correctly identify cardiac 
issues from 50 percent to 81 percent.

While in most cases using a rainbow 
colormap is not life-or-death, getting 
over the rainbow can improve data 
interpretation. Rainbows trick people 
into seeing false patterns in data. Color 
changes over rainbows are not uniform 
in their magnitude or direction, causing 
mismatches between perceived color 
differences and actual data differences. 
These mismatches distort value 
relationships and lead people to see data 
differences as being artificially smaller 
or larger than they actually are. For 
example, in Figure 3 the yellows appear 
far more similar to the oranges than to 
the equidistant greens.

Rainbows also cause people to 
visually group colors sharing the 
same name, such as shades of blue. In 

practice, this grouping makes rainbows 
useful for visualizing categorical data 
(e.g., apples and oranges). However, 
using rainbows for continuous values 
introduces artificial divisions in 
smoothly varying data. These divisions 
create false associations within grouped 
colors and dissociations between 
colors that bias what we see as same 
and different data. In Figure 3, we see 
clear bands of blues, greens, yellows, 
and reds, even though the data varies 
smoothly across the entire dataset. 
More appropriate colormaps overcome 
these biases by visually preserving 
relative data magnitudes.

Even if you consider yourself robust 
to the rainbow, consider that nearly 1 
in 12 men are colorblind [3]. Colorblind 
individuals see the rainbow differently: 
They cannot discriminate between 
certain hues. This lack of discrimination 
does not just cause people to see reds 
and greens as the same but also shifts 
the perception of all hues by removing 
individual color components from 
each color in the rainbow. This shift 
further skews the mapping between 
color and data, leading to significant 
misperceptions and inaccessible data.

Tools such as ColorBrewer, 
Colorgorical, and Adobe Kuler offer 
principled alternatives to rainbows 
and allow you to tailor colormaps to 
best represent the visualized data 
types. If your data is categorical (e.g., 
dogs and cats), rainbows are fair game. 
However, ordered or continuous data 
should use either sequential or diverging 
colormaps. To choose between them, 
determine if there is a meaningful 
middle point in your data (e.g., 

differences from a baseline or natural 
zero value). If so, diverging colormaps 
(those that extend continuously 
from a neutral middle color) allow 
easy comparisons to that middle 
point. If not, sequential colormaps 
intuitively represent data magnitudes 
(Figure 3). By matching color to data, 
visualizations can avoid needless 
distortions that so often lead to false 
conclusions.

DATA ON THE MOVE
Many visualizations use animations. 
For example, a data point’s velocity may 
represent its value. We visualize data 
at different time points in sequence 
to show change over time. Animated 
visualizations are flashy and engaging; 
however, they also blind people to 
important changes in data.

While we can use motion direction 
and velocity to encode data, people can 
distinguish only a handful of different 
speeds and motion directions [4] and 
can trace the specific movement of only 
three to four data points at a time [5]. 
Our limited abilities to track moving 
objects imply that representing data 
using motion may help us identify only a 
few high-level patterns with little sense 
of what those patterns mean. 

These limitations are especially 
problematic for showing values 
changing over time. For example, 
Hans Rosling’s GapMinder TED Talk 
[6] leverages animation to narrate 
changes in the global economy. 
Much of the power in this story lies 
in Rosling’s ability to direct your 
attention to important changes in 
the data. However, our attention is a 
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Figure 3. Rainbow colormaps make engaging figures but also create artificial divisions and skew value differences in ways that have caused 
innumerable false conclusions. Using a sequential colormap supports more accurate insights into smoothly varying datasets.



(visualizing multiple time points side 
by side), superposition (arranging data 
from multiple time points on the same 
axes), and explicit encoding (directly 
visualizing the differences between 
time points). We choose between these 
different techniques by focusing on what 
aspects of change we want to highlight 
in our visualization and how many 
time points we need to see at any one 
time. Superposition facilitates precise 
and immediate comparison across a 
small number of time points; however, 
layering too many time points causes 
data points to occlude one another. 
Juxtaposition scales comparisons across 
larger datasets; however, it is difficult 
to precisely compare visualizations 
that are far apart. Explicit encoding 
can extract and represent salient 
information about changes over time, 
such as the trajectory a point follows on 
a scatterplot; however, these techniques 
require determining what differences 
matter for the analysis. By considering 
data scale and relevant questions, we 

scarce resource: We can allot a limited 
amount to any given set of data points. 
By directing our attention to one set of 
values, we effectively ignore changes 
in the rest of the dataset. As a result, 
animating your data over time may 
cause people to lose sight of most of the 
data.

This information loss is in large 
part due to change blindness, a 
phenomenon where attending to one 
change leaves us blind to others. For 
example, counting the number of times 
a basketball is passed causes us to miss 
a gorilla dancing through the passers 

[7]. We can replace a conversant mid-
discussion without notice [8]. In data 
visualizations, change blindness means 
that if we don’t tell the analyst what 
aspects of an animated visualization 
to pay attention to, they may never see 
important changes in their data. Even 
if they see these changes, our limited 
memory prevents us from recalling 
precise differences over time.

We can overcome these limitations 
by directly visualizing how data 
changes over time. Methods for such 
temporal comparison fall into three 
categories (Figure 4): juxtaposition 

Our attention is a scarce resource: We can 
allot a limited amount to any given set of 
data points. By directing our attention to 
one set of values, we effectively ignore 
changes in the rest of the dataset.
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Figure 4. Animated data can leave people blind to important changes. Instead, consider methods for directly supporting comparison across  
time points.



can use these visualizations to compare 
changes over time without blinding 
people to critical changes in their data.

A MATTER OF SCALES
When we represent data on a standard 
Cartesian plane, many systems by 
default fit axis ranges to natural data 
scales, such as the minimum and 
maximum value. This choice maximizes 
the space in a graph dedicated to data. 
However, it also may cause people to see 
differences in the data that simply do 
not exist.

This issue is most problematic when 
visualizations begin their y-axes above 
zero. In many common visualizations, 
we interpret visualized values by 
measuring the distance between the 
x-axis and our marks (e.g., the top of a 
bar, the position of a point). Non-zero 
y-axes distort the difference between 
values, causing small differences to 
appear much larger than they truly are. 
Consider the example shown in Figure 
1: The data difference is only 5 percent, 
yet the left bar appears twice as large as 
the right bar. Many argue that labeling 
axes counteracts the biasing effects of 
truncating the y-axis. However, people 
seldom read axis labels: The ratios 
people see at a glance often reflect the 
conclusions they will draw from data [9].

The same is true of normalized 
axes. If you have multiple consecutive 
plots showing the same variables, 
the axes should map to the same data 
ranges. Consider the infamous Planned 
Parenthood comparison chart [10]. The 
y-axis corresponds to the number of 
services provided; however, these axes 
are normalized to two different ranges, 
creating a false crossing in the data. 
Renormalizing these axes to the same 
scale tells a different story: At no point 
does the dominant provided service 
change. The most salient feature of the 
original graph led to a false conclusion 
because of improper normalization.

The distortion caused by poor axis 
scaling is a by-product of the way we 
read visualizations. Axis labels require 
conscious attention to interpret: We 
have to actively read these numbers to 
make sense of them. However, when 
we look at a visualization, we form the 
gist of a visual scene unconsciously. 
We get a sense of the data’s shape and 
distributional properties without 
actively reading anything. If we use 
different axes to represent different 
facets of our data, the resulting shapes 

and structures distort our perceptions 
of the data.

The one place where starting y-axes 
at values greater than zero is still a 
matter of debate is in communicating 
variation. For line graphs, small 
variations become less noticeable 
as the amount of space dedicated to 
those varying elements grows smaller; 
the magnitude of these small-scale 
variations becomes distorted by 
truncated axes. But if an analyst cares 
about variation rather than magnitude, 
many argue that the loss of fidelity from 
non-zero y-axes may be mitigated: The 
distortions created by the axis may not 
matter.

Instead of truncating your axes, 
consider the story the visualization 
is supposed to tell. What are the 
important differences in the data? 
For example, if you want to visualize 
change in a value over time, instead of 
communicating the raw magnitudes, 
you may wish to compute change 
relative to some baseline and visualize 
that computed value instead. To 
tell a story about growth or decline, 
visualize the rate of growth rather 
than the full population. By visualizing 
metrics more closely tied to the actual 
quantity of interest using honest 
axes, visualizations can focus on data 
that matters without introducing 
unnecessary bias.

THREE PROBLEMS WITH 3D
Three-dimensional visualizations 
create graphics that appear to pop out 
of the page. They are seen as engaging, 
futuristic, and sophisticated. And 
removing the ability to generate them 
is one of the best things presentation 
tools could do for honest data 
communication.

3D visualizations in two-dimensional 
media like slideshows and papers suffer 
from three primary issues that bias 
analysis: occlusion, projection, and 
perceptual ambiguity. Occlusion occurs 
when some marks make it difficult 
(or even impossible) to view others. 
Consider Figure 5: Center bars are 
occluded by outer values, complicating 
analysis. In the real world, people 
can move around objects to resolve 
occlusions. For example, we peek 
around a wall to see what lies behind it. 
In 2D, people generally cannot change 
their viewpoint to see occluded data. 
Occluded data is effectively lost. Even 
if people can move their viewpoint, 

occlusion may prevent us from knowing 
where to look.

Our ability to resolve 3D objects 
stems from both monocular cues (e.g., 
one object being partially occluded 
by another) and binocular cues (e.g., 
information coming from each eye fused 
into a single picture). When we project 
3D data onto a 2D image, we lose 
binocular cues. For example, we cannot 
engage motion parallax—the same 
depth cue that cats use when bobbing 
back and forth to judge how far to 
leap—or vergence—our brain’s ability 
to resolve 3D position using the angles 
between an object and our eyes. As a 
result, 2D projections are inherently 
imperfect approximations of 3D space 
and are often difficult to resolve. For 
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Figure 5. 3D bar charts can occlude data 
and distort values. Leveraging a third visual 
variable, such as size or color, supports 
more accurate comparisons over multiple 
dimensions.
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are two primary cases where we may 
choose to explicitly aggregate data: 
when aggregate statistics are sufficient 
for our analysis and when we have too 
much data to visualize at once. In some 
cases, we may not need much data to 
address the question at hand. However, 
such visualizations should use caution 
when communicating statistics. For 
example, analysts often compare sample 
populations using bar charts with 
error bars. This method, despite its 
popularity, causes people to interpret 
values inside of a bar as statistically 
more likely than those outside of the 
bar, a phenomenon known as within-the-
bar bias [15,16]. We can avoid this bias 
by using representations that provide 
more transparent insight into the data 
distribution. A violin plot (Figure 7) 
visualizes data distributions alongside 
means to help avoid within-the-bar 
bias; it also surfaces aspects of the data 
distribution that enrich analysis, such 
as the normal, bimodal, and skewed 
distributions in the figure’s three 
samples.

Showing the full dataset is not 
always an option. Modern datasets 
may simply have too much data to 
visualize. Trying to show all available 
data can lead to clutter—we have 
so much visual information, we 
cannot find the data that matters. For 
example, network visualizations may 
gain so many connections that they 
become a “hairball”: It is impossible to 
disentangle the individual relationships 
between entities in the graph. We can 
overcome clutter by carefully coupling 
statistics and visualization to construct 
visual summaries—visualizations 
that reduce the amount of data shown 
while preserving important properties 
of the distribution. For example, we 
can compute representative statistics 
for relevant subsets such as clusters or 
connected components. Alternatively, 
we can filter out irrelevant information 
to focus on relevant elements of 
the dataset. We can even randomly 
subsample our data, preserving the 
underlying data distribution while 
reducing the overall amount of 
information shown.

Balancing showing and telling in 
visualization is more of an art than a 
science, as we need to allow accurate and 
flexible analysis while not overwhelming 
people with too much information. Ideal 
visualizations should be transparent: 
People should understand how the data 

example, when we tilt a pie chart in 3D, 
we distort the angles between slices of 
the pie (Figure 6) [11]. This distortion 
at best makes it harder to read the data 
and at worst causes incorrect analysis 
by distorting mark shape and size 
(and consequently perceived values) 
at different depths. These distortions 
worsen when we map data to size: As 
objects get farther away, they also 
appear smaller. In 3D visualizations, 
a small object may either have a small 
value or be far away. We cannot visually 
resolve the two possibilities.

To avoid occlusion and ambiguity 
in visualizations, use 3D only when 
absolutely necessary. Instead of 
representing the third dimension 
of your data using depth, try using 
alternative visual variables like color 
or size (Figure 5). Some kinds of data, 
like molecular surfaces or architectural 
structures, have inherent 3D shapes. In 
these cases, 3D can provide important 
contextual information. However, 3D is 

still often imperfect for these scenarios. 
For example, we can see only half of 
any 3D volume from a single viewpoint. 
Pairing 2D summary representations 
with 3D structures can help overcome 
these limitations, even for complex 
geometries and inherently spatial data.

SHOW, DON’T TELL
As algorithms improve, it is tempting 
to rely on statistical processing for 
most data analysis. Visualizations 
increasingly represent the outputs of 
these processes rather than the original 
data. People often see algorithms as 
less error prone and unbiased; however, 
like people, algorithms are subject to 
bias and make mistakes. Electing to 
visualize algorithmic outputs without 
the context of the underlying data 
deprives people of the information 
necessary to evaluate the output’s 
meaning and validity.

In collaboration with Microsoft 
and the University of Wisconsin, we 
surveyed the ways in which people 
visualize large collections of data. 
The majority of systems (74 percent) 
computed and directly visualized 
representative statistics [12]. While 
such statistical aggregation allows 
people to make precise claims about 
target quantities, it comes at the 
expense of context and flexibility. 
Consider a scatterplot comparing two 
clusters, A and B. If we choose to show 
the means of A and B, we have precise 
information about these means but have 
no data about other statistics of each 
cluster, such as the variance or density.

People can efficiently estimate 
aspects of a statistical distribution at a 
glance [13]. They can use visualizations 
to estimate properties of a distribution 
like means, variance, and even higher-
order statistics like correlation quickly 
and accurately [14]. For example, within 
a half second of looking at a bubbleplot, 
we already have an approximate sense 
of the mean size of the collection 
of bubbles. Our abilities to visually 
compute these values relates to the 
concept of ensemble coding—a process 
our brain uses to compactly represent 
large quantities of visual information 
by recalling the data’s distributional 
parameters.

When reasonable, visualizations 
should err toward providing more data 
rather than less. This design choice 
sacrifices precise statistical comparison 
in order to enrich analysis. There 
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changed between the raw, unprocessed 
file and visualized marks, and how the 
patterns they see reflect the underlying 
data. What statistics are used? What 
was filtered for? What happened to 
outliers? By being transparent with 
visualizations, we can help people 
better understand the available data and 
intuitively generate informed insights 
and decisions, even with large data 
collections.

TOWARD BETTER PRACTICES
This article focuses on common 
mistakes in visualizations that bias data 
analysis. These guidelines are deeply 
grounded in empirical studies and 
decades of observation and practice. 
Vision science and visualization 
offer some explanation for why these 
phenomena occur and allow us to design 
alternative representations that more 
faithfully depict data.

However, we are far from 
understanding all of the mechanisms 
at play when people interpret data. For 
example, how might visualizations 
account for illusions that occur 
naturally in data? Can we rescale or 
renormalize visualizations to account 
for biases introduced by the ways we 
see the world? How do we intuitively 
navigate high-dimensional data? How 
do we effectively pair visualization 
and computation to help people better 
leverage petabyte datasets?

A principled and quantified 
understanding of the way we see data 
can empower people to better leverage 

the many benefits offered by data. 
Crafting optimal visualizations is 
still an unsolved and wicked problem. 
Deeper collaboration between data 
science, cognitive science, and vision 
science is necessary to move us toward 
algorithmic and visual solutions that 
can scaffold an informed and inclusive 
data-driven society.
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Figure 7. Traditional aggregation methods, such as bar charts encoding means, replace data with statistics, obscuring important patterns in the 
underlying data distribution.


