
Optimization and
Gradient Descent

INFO-4604, Applied Machine Learning
University of Colorado Boulder

September 11, 2018
Prof. Michael Paul



Prediction Functions
Remember: a prediction function is the 
function that predicts what the output should be, 
given the input.



Prediction Functions
Linear regression:

f(x) = wTx + b

Linear classification (perceptron):

f(x) =     1,   wTx + b ≥ 0
-1,   wTx + b < 0

Need to learn what w should be!



Learning Parameters
Goal is to learn to minimize error
• Ideally: true error
• Instead: training error

The loss function gives the training error when 
using parameters w, denoted L(w).
• Also called cost function
• More general: objective function

(in general objective could be to minimize or maximize; 
with loss/cost functions, we want to minimize)



Learning Parameters
Goal is to minimize loss function.

How do we minimize a function?
Let’s review some math.



Rate of Change

The slope of a line is also called the
rate of change of the line.

y = ½x + 1

“run”

“rise”



Rate of Change

For nonlinear functions, the “rise over run” 
formula gives you the average rate of 
change between two points

f(x) = x2

Average slope from 
x=-1 to x=0 is: 
-1



Rate of Change

There is also a concept of rate of change at 
individual points (rather than two points)

f(x) = x2
Slope at x=-1 is:
-2



Rate of Change

The slope at a point is called the derivative
at that point

f(x) = x2
Intuition: 
Measure the slope 
between two points 
that are really close 
together



Rate of Change
The slope at a point is called the derivative at that 
point
Intuition: Measure the slope between two points that 
are really close together

f(x + c) – f(x)
c

Limit as c goes to zero

f(x)

f(x+c)



Maxima and Minima
Whenever there is a peak in the data, this is a 
maximum

The global maximum is the highest peak in the 
entire data set, or the largest f(x) value the 
function can output

A local maximum is any peak, when the rate of 
change switches from positive to negative



Maxima and Minima
Whenever there is a trough in the data, this is a 
minimum

The global minimum is the lowest trough in the 
entire data set, or the smallest f(x) value the 
function can output

A local minimum is any trough, when the rate of 
change switches from negative to positive



Maxima and Minima

From:&https://www.mathsisfun.com/algebra/functions8maxima8minima.html

All global maxima and minima are also local 
maxima and minima

https://www.mathsisfun.com/algebra/functions-maxima-minima.html


Derivatives
The derivative of f(x) = x2 is 2x

Other ways of writing this:
f’(x) = 2x
d/dx [x2] = 2x
df/dx = 2x

The derivative is also a function! It depends on the 
value of x.
• The rate of change is different at different points



Derivatives
The derivative of f(x) = x2 is 2x

f(x) f’(x)



Derivatives
How to calculate a derivative? 
• Not going to do it in this class.

Some software can do it for you.
• Wolfram Alpha

https://www.wolframalpha.com/input/?i=d/dx+x%5E2


Derivatives
What if a function has multiple arguments?

Ex: f(x1, x2) = 3x1 + 5x2

df/dx1 = 3 + 5x2 The derivative “with respect to” x1
df/dx2 = 3x1 + 5 The derivative “with respect to” x2

These two functions are called partial derivatives.
The vector of all partial derivatives for a function f is 
called the gradient of the function:

∇f(x1, x2) =  < df/dx1 , df/dx2 >



From:&http://mathinsight.org/directional_derivative_gradient_introduction

http://mathinsight.org/directional_derivative_gradient_introduction


From:&http://mathinsight.org/directional_derivative_gradient_introduction

http://mathinsight.org/directional_derivative_gradient_introduction


From:&http://mathinsight.org/directional_derivative_gradient_introduction

http://mathinsight.org/directional_derivative_gradient_introduction


Finding Minima
The derivative is zero at any local maximum or 
minimum.



Finding Minima
The derivative is zero at any local maximum or 
minimum.

One way to find a minimum: set f’(x)=0 and solve 
for x.

f(x) = x2

f’(x) = 2x
f’(x) = 0 when x = 0, so minimum at x = 0



Finding Minima
The derivative is zero at any local maximum or 
minimum.

One way to find a minimum: set f’(x)=0 and solve 
for x.
• For most functions, there isn’t a way to solve this.
• Instead: algorithmically search different values of x until 

you find one that results in a gradient near 0.



Finding Minima
If the derivative is positive, the function is 
increasing.
• Don’t move in that direction, because you’ll be 

moving away from a trough.

If the derivative is negative, the function is 
decreasing.
• Keep going, since you’re getting closer to a 

trough



Finding Minima

f’(-1) = -2
At x=-1, the function is 
decreasing as x gets larger. 
This is what we want, so 
let’s make x larger.
Increase x by the size of the 
gradient:

-1 + 2 = 1



Finding Minima

f’(-1) = -2
At x=-1, the function is 
decreasing as x gets larger. 
This is what we want, so 
let’s make x larger.
Increase x by the size of the 
gradient:

-1 + 2 = 1



Finding Minima

f’(1) = 2
At x=1, the function is 
increasing as x gets larger. 
This is not what we want, so 
let’s make x smaller.
Decrease x by the size of 
the gradient:

1 - 2 = -1



Finding Minima

f’(1) = 2
At x=1, the function is 
increasing as x gets larger. 
This is not what we want, so 
let’s make x smaller.
Decrease x by the size of 
the gradient:

1 - 2 = -1



Finding Minima

We will keep jumping 
between the same two 
points this way. 

We can fix this be using a 
learning rate or step size.



Finding Minima

f’(-1) = -2
x += 2η = 



Finding Minima

f’(-1) = -2
x += 2η = 

Let’s use η = 0.25.



Finding Minima

f’(-1) = -2
x = -1 + 2(.25) = -0.5



Finding Minima

f’(-1) = -2
x = -1 + 2(.25) = -0.5
f’(-0.5) = -1
x = -0.5 + 1(.25) = -0.25



Finding Minima

f’(-1) = -2
x = -1 + 2(.25) = -0.5
f’(-0.5) = -1
x = -0.5 + 1(.25) = -0.25
f’(-0.25) = -0.5
x = -0.25 + 0.5(.25) = -0.125



Finding Minima

f’(-1) = -2
x = -1 + 2(.25) = -0.5
f’(-0.5) = -1
x = -0.5 + 1(.25) = -0.25
f’(-0.25) = -0.5
x = -0.25 + 0.5(.25) = -0.125

Eventually we’ll reach x=0.



Gradient Descent
1. Initialize the parameters w to some guess 

(usually all zeros, or random values)
2. Update the parameters:

w = w – η ∇L(w)
3. Update the learning rate η

(How? Later…)
4. Repeat steps 2-3 until ∇L(w) is close to zero.



Gradient Descent
Gradient descent is guaranteed to eventually find 
a local minimum if:
• the learning rate is decreased appropriately;
• a finite local minimum exists (i.e., the function 

doesn’t keep decreasing forever).



Gradient Ascent
What if we want to find a local maximum?

Same idea, but the update rule moves the 
parameters in the opposite direction:

w = w + η ∇L(w)



Learning Rate
In order to guarantee that the algorithm will 
converge, the learning rate should decrease over 
time. Here is a general formula.

At iteration t:

ηt = c1 / (ta + c2), 
where 0.5 < a < 2

c1 > 0
c2 ≥ 0



Stopping Criteria
For most functions, you probably won’t get the 
gradient to be exactly equal to 0 in a reasonable 
amount of time.

Once the gradient is sufficiently close to 0, stop 
trying to minimize further.

How do we measure how close a gradient is to 0?



Distance

A special case is the distance between a 
point and zero (the origin).

d(p, 0) = √ (pi)2

This is called the Euclidean norm of p
• A norm is a measure of a vector’s length
• The Euclidean norm is also called the L2 norm

i=1

k



Distance

A special case is the distance between a 
point and zero (the origin).

d(p, 0) = √ (pi)2

Also written: ||p||

i=1

k



Stopping Criteria
Stop when the norm of the gradient is below some 
threshold, θ:

||∇L(w)|| < θ

Common values of θ are around .01, but if it is 
taking too long, you can make the threshold larger.



Gradient Descent
1. Initialize the parameters w to some guess 

(usually all zeros, or random values)
2. Update the parameters:

w = w – η ∇L(w) 
η = c1 / (ta + c2)

3. Repeat step 2 until ||∇L(w)|| < θ or until the 
maximum number of iterations is reached.



Revisiting Perceptron
In perceptron, you increase the weights if they 
were an underestimate and decrease if they 
were an overestimate.

This looks similar to the gradient descent rule. 
• Is it? We’ll come back to this.

wj += η (yi – f(xi)) xij



Adaline
Similar algorithm to perceptron (but uncommon):

Predictions use the same function:
f(x) =     1,   wTx ≥ 0

-1,   wTx < 0

(here the bias b is folded into the weight vector w)



Adaline
Perceptron minimizes the number of errors.

Adaline instead tries to make wTx close to the 
correct value (1 or -1, even though wTx can be 
any real number).

Loss function for Adaline:
L(w) =      (yi – wTxi)2

i=1

N

This is called the squared error.
(This is the same loss function 
used for linear regression.)



Adaline
What is the derivative of the loss?

L(w) =      (yi – wTxi)2

dL/dwj =      -2 xij (yi – wTxi)
i=1

N

i=1

N



Adaline
The gradient descent algorithm for Adaline 
updates each feature weight using the rule:

wj += η 2 xij (yi – wTxi)

Two main differences from perceptron: 
• (yi – wTxi) is a real value, instead of a binary value 

(perceptron either correct or incorrect)
• The update is based on the entire training set, 

instead of one instance at a time.

i=1

N



Adaline
The gradient descent algorithm for Adaline 
updates each feature weight using the rule:

wj += η 2 xij (yi – wTxi)

Two main differences from perceptron:
• (yi – wTxi) is a real value, instead of a binary value 

(perceptron either correct or incorrect)
• The update is based on the entire training set, 

instead of one instance at a time.

i=1

N



Stochastic Gradient Descent
A variant of gradient descent makes updates 
using an approximate of the gradient that is only 
based on one instance at a time.

Li(w) = (yi – wTxi)2

dLi/dwj =  -2 xij (yi – wTxi)



Stochastic Gradient Descent
General algorithm for SGD:

1. Iterate through the instances in a random order
a) For each instance xi, update the weights based on 

the gradient of the loss for that instance only:

w = w – η ∇Li(w; xi)

The gradient for one instance’s loss is an 
approximation to the true gradient
• stochastic = random

The expected gradient is the true gradient



Adaline
The gradient descent algorithm for Adaline 
updates each feature weight using the rule:

wj += η 2 xij (yi – wTxi)

Two main differences from perceptron:
• (yi – wTxi) is a real value, instead of a binary value 

(perceptron either correct or incorrect)
• The update is based on the entire training set, 

instead of one instance at a time.

i=1

N



Revisiting Perceptron
Perceptron has a different loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 0
- yi (wTxi), otherwise



Revisiting Perceptron
Perceptron has a different loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 0
- yi (wTxi), otherwise

The derivative here is 0.
No gradient descent 
updates if the prediction 
was correct.



Revisiting Perceptron
Perceptron has a different loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 0
- yi (wTxi), otherwise

The derivative here is –yixij.
If xij is positive, dLi/wj will be 
negative when yi is positive, 
so the gradient descent 
update will be positive.



Revisiting Perceptron
Perceptron has a different loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 0
- yi (wTxi), otherwise

The derivative here is –yixij.
If xij is positive, dLi/wj will be 
negative when yi is positive, 
so the gradient descent 
update will be positive.

This means the 
classifier made an 
underestimate, so 
perceptron makes 
the weights larger.



Revisiting Perceptron
Perceptron has a different loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 0
- yi (wTxi), otherwise

The derivative here is –yixij.
If xij is positive, dLi/wj will be 
positive when yi is negative, 
so the gradient descent 
update will be negative.



Revisiting Perceptron
Perceptron has a different loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 0
- yi (wTxi), otherwise

The derivative doesn’t 
actually exist at this point 
(the function isn’t smooth)



Revisiting Perceptron
Perceptron has a different loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 0
- yi (wTxi), otherwise

A subgradient is a 
generalization of the 
gradient for points that are 
not differentiable.
0 and -yixij are both valid 
subgradients at this point.



Revisiting Perceptron
Perceptron has a different loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 0
- yi (wTxi), otherwise

Perceptron is a stochastic gradient descent algorithm 
using this loss function (and using the subgradient
instead of gradient)



Convexity
How do you know if you’ve found the global 
minimum, or just a local minimum?

A convex function has only one minimum:



Convexity
How do you know if you’ve found the global 
minimum, or just a local minimum?

A convex function has only one minimum:



Convexity
A concave function has only one maximum:

Sometimes people use “convex” to mean either 
convex or concave



Convexity
Squared error is a convex loss function, as is the 
perceptron loss.

Note: convexity means there 
is only one minimum value, 
but there may be multiple 
parameters that result in 
that minimum value.



Summary
Most machine learning algorithms are some 
combination of a loss function + an algorithm for 
finding a local minimum.
• Gradient descent is a common minimizer, but there 

are others.

With most of the common classification 
algorithms, there is only one global minimum, 
and gradient descent will find it.
• Most often: supervised functions are convex,

unsupervised functions are non-convex.



Summary
1. Initialize the parameters w to some guess 

(usually all zeros, or random values)
2. Update the parameters:

w = w – η ∇L(w) 
η = c1 / (ta + c2)

3. Repeat step 2 until ||∇L(w)|| < θ or until the 
maximum number of iterations is reached.


