Optimization and
Gradient Descent

INFO-4604, Applied Machine Learning
University of Colorado Boulder

September 11, 2018
Prof. Michael Paul

Prediction Functions

Remember: a prediction function is the
function that predicts what the output should be,
given the input.

Prediction Functions

Linear regression:

f(X) =wTx + b

Linear classification (perceptron):

f(x)= |1, wix+b=0
-1, wix+b<0

Need to /learn what w should be!

Learning Parameters

Goal is to learn to minimize error
* |deally: true error
* Instead: training error

The loss function gives the training error when
using parameters w, denoted L(w).

* Also called cost function

* More general: objective function
(in general objective could be to minimize or maximize;
with loss/cost functions, we want to minimize)

Learning Parameters

Goal is to minimize loss function.

How do we minimize a function?
Let’s review some math.

Rate of Change

The slope of a line is also called the
rate of change of the line.

y =lox + 1

Rate of Change

For nonlinear functions, the “rise over run”
formula gives you the average rate of
change between two points

Average slope from
x=-1to x=0 is:
-1

Rate of Change

There is also a concept of rate of change at
individual points (rather than two points)

Slope at x=-1 is:

Rate of Change

The slope at a point is called the derivative
at that point

Intuition:

Measure the slope
between two points
that are really close
together

f(x) = x2

o o
-

Rate of Change

The slope at a point is called the derivative at that
point

Intuition: Measure the slope between two points that
are really close together

f(x + c) — f(x)
C

Limit as ¢ goes to zero

o o

Maxima and Minima

Whenever there is a peak in the data, this is a
maximum

The global maximum is the highest peak in the
entire data set, or the largest f(x) value the
function can output

A local maximum is any peak, when the rate of
change switches from positive to negative

Maxima and Minima

Whenever there is a trough in the data, this is a
minimum

The global minimum is the lowest trough in the
entire data set, or the smallest f(x) value the
function can output

A local minimum is any trough, when the rate of
change switches from negative to positive

Maxima and Minima

Global
yA MaTum
Global
Minimum
f(x) / \
/ R mimme J/
inimum
o Y
X - 00

From: https://www.mathsisfun.com/algebra/functions-maxima-minima.html

All global maxima and minima are also local
maxima and minima

https://www.mathsisfun.com/algebra/functions-maxima-minima.html

Derivatives

The derivative of f(x) = x2 is 2x

Other ways of writing this:
f’(x) = 2x
d/dx [x2] = 2x
df/dx = 2x

The derivative is also a function! It depends on the
value of x.

* The rate of change is different at different points

Derivatives

The derivative of f(x) = x2 is 2x

P

Derivatives

How to calculate a derivative?
* Not going to do it in this class.

Some software can do it for you.

* Wolfram Alpha ¥ Wolfram

d/dx x*2

—(*)=2x
X

https://www.wolframalpha.com/input/?i=d/dx+x%5E2

Derivatives

What if a function has multiple arguments?
EX: f(Xq, X5) = 3X4 + 95X,

df/dx, = 3 + 5X, The derivative “with respect to” x;
df/dx, = 3xy + 5 The derivative “with respect to” x,

These two functions are called partial derivatives.

The vector of all partial derivatives for a function f is
called the gradient of the function:

Vi(X4, Xo) = < df/dx,, df/dx,>

o— a=(6.7,1.1) Duf(a) = 2.00 /

u=(-0.91,-042) Vf(a)=(-1.81,-0.85) ||Vf(a)ll =2.00

From: http://mathinsight.org/directional derivative gradient introduction

http://mathinsight.org/directional_derivative_gradient_introduction

8=0 A
® a=(-0.0, -3.0) D.f(a) = 1.11

u =(0.15, 0.99) Vi(a) = (0.17, 1.09) ivf(a) = 1.1

From: http://mathinsight.org/directional derivative gradient introduction

http://mathinsight.org/directional_derivative_gradient_introduction

8=0
® a=(2.6,-1.0) D.f(a) = 2.14 f

u = (-0.26, 0.97) Vif(a) = (-0.56, 2.07) vf(a)i =2.14

From: http://mathinsight.org/directional derivative gradient introduction

http://mathinsight.org/directional_derivative_gradient_introduction

Finding Minima

The derivative is zero at any local maximum or
minimum.

Global
Maximum
y\ ~‘1
Global
£0) Minimum
X
/ { Local J/
Minimum
S \Y
x - 00

Finding Minima

The derivative is zero at any local maximum or
minimum.

One way to find a minimum: set f’(x)=0 and solve
for x.

x) O when x =0, so minimum atx =0

Finding Minima

The derivative is zero at any local maximum or
minimum.

One way to find a minimum: set f’(x)=0 and solve
for x.

« For most functions, there isn’t a way to solve this.

* Instead: algorithmically search different values of x until
you find one that results in a gradient near 0.

Finding Minima

If the derivative is positive, the function is
increasing.

* Don’t move in that direction, because you’ll be
moving away from a trough.

If the derivative is negative, the function is
decreasing.

» Keep going, since you're getting closer to a
trough

Finding Minima

- f'(-1) =-2
At x=-1, the function is
decreasing as x gets larger.
This is what we want, so
let’'s make x larger.
1 Increase x by the size of the
gradient:

-1+2=1

T o

»
— ——
L

Finding Minima

- f'(-1) =-2
At x=-1, the function is
decreasing as x gets larger.
This is what we want, so
let’'s make x larger.
1 Increase x by the size of the
gradient:

-1+2=1

T o

»
— ——
L

Finding Minima

T (1) =2
At x=1, the function is
Increasing as x gets larger.
This is not what we want, so
let’'s make x smaller.
1 Decrease x by the size of
the gradient:

1-2=-1

T o

»
— ——
L

Finding Minima

T (1) =2
At x=1, the function is
Increasing as x gets larger.
This is not what we want, so
let’'s make x smaller.
1 Decrease x by the size of
the gradient:

1-2=-1

T o

»
— ——
L

Finding Minima

T We will keep jumping
between the same two
points this way.

We can fix this be using a
4 learning rate or step size.

i o

-
—
PJ

Finding Minima

f(-1) =-2
X+=2n =

Finding Minima

f(-1) =-2
X+=2n =

Let’'s use n = 0.25.

Finding Minima

P(-1) = -2
x =-1+2(.25) = -0.5

Finding Minima

P(-1) = -2

X = -1+ 2(.25) = -0.5
£(-0.5) = -1

x =-0.5 + 1(.25) = -0.25

Finding Minima

P(-1) = -2

X = -1+ 2(.25) = -0.5

£(-0.5) = -1

x =-0.5 + 1(.25) = -0.25
£(-0.25) = -0.5

x = -0.25 + 0.5(.25) = -0.125

Finding Minima

P(-1) = -2

X = -1+ 2(.25) = -0.5

£(-0.5) = -1

x =-0.5 + 1(.25) = -0.25
£(-0.25) = -0.5

x = -0.25 + 0.5(.25) = -0.125

Eventually we’ll reach x=0.

Gradient Descent

1. Initialize the parameters w to some guess
(usually all zeros, or random values)

2. Update the parameters:
w=w-n VL(w)

3. Update the learning rate n
(How? Later...)

4. Repeat steps 2-3 until VL(w) is close to zero.

Gradient Descent

Gradient descent is guaranteed to eventually find
a local minimum if:

* the learning rate is decreased appropriately;

» a finite local minimum exists (i.e., the function
doesn’t keep decreasing forever).

Gradient Ascent

What if we want to find a local maximum?

Same idea, but the update rule moves the
parameters in the opposite direction:

w=w+n VL(w)

Learning Rate

In order to guarantee that the algorithm will
converge, the learning rate should decrease over

time. Here is a general formula.

At iteration t:

Ny =Cy /(12 + Cp),
where 0.5<a<?2
cl>0
c2=0

Stopping Criteria

For most functions, you probably won’t get the
gradient to be exactly equal to 0 in a reasonable

amount of time.

Once the gradient is sufficiently close to 0, stop
trying to minimize further.

How do we measure how close a gradient is to 07?

Distance

A special case is the distance between a
point and zero (the origin).

d(p, 0) = V' ()

This is called the Euclidean norm of p
 Anorm is a measure of a vector’s length
* The Euclidean norm is also called the L2 norm

Distance

A special case is the distance between a
point and zero (the origin).

d(p, 0) = V' ()

Also written: lIpll

Stopping Criteria

Stop when the norm of the gradient is below some
threshold, O:

IVL(W)Il < 6

Common values of 8 are around .01, but if it is
taking too long, you can make the threshold larger.

Gradient Descent

1. Initialize the parameters w to some guess
(usually all zeros, or random values)

2. Update the parameters:
w=w-n VL(w)
Nn==cq/ (2 +cCy)
3. Repeat step 2 until lIVL(w)ll < 8 or until the
maximum number of iterations is reached.

Revisiting Perceptron

In perceptron, you increase the weights if they
were an underestimate and decrease if they
were an overestimate.

w; +=1 (y; — (X)) X;

This looks similar to the gradient descent rule.
* Is it? We’ll come back to this.

Adaline

Similar algorithm to perceptron (but uncommon):

Predictions use the same function:
fxX)= |1, wix=0

--1, wix<0

(here the bias b is folded into the weight vector w)

Adaline

Perceptron minimizes the number of errors.

Adaline instead tries to make w'x close to the
correct value (1 or -1, even though w'x can be
any real number).

Loss funthion for Adaline:

— — wTx.)2
L(w) = Z (¥i — wx;) This is called the squared error.
i=l (This is the same loss function
used for linear regression.)

Adaline

What is the derivative of the loss?

HMZ

Y. WX;)?

dL/dw; = Z -2 X (Y; — WTX;)

Adaline

The gradient descent algorithm for Adaline
updates each feature weight using the rule:

N
W +=1] Z 2 X (i — w'x;)
=1

Two main differences from perceptron:

* (yi — w'X;) is a real value, instead of a binary value
(perceptron either correct or incorrect)

» The update is based on the entire training set,
instead of one instance at a time.

Adaline

The gradient descent algorithm for Adaline
updates each feature weight using the rule:

N
W +=1] Z 2 X (i — w'x;)
=1

Two main differences from perceptron:

* (yi — w'X;) is a real value, instead of a binary value
(perceptron either correct or incorrect)

» The update is based on the entire training set,
instead of one instance at a time.

Stochastic Gradient Descent

A variant of gradient descent makes updates

using an approximate of the gradient that is only
based on one instance at a time.

Li(w) = (y;—w'x;)?

dLlldWJ — '2 Xij (yl — WTXi)

Stochastic Gradient Descent

General algorithm for SGD:

1. lterate through the instances in a random order

a) For each instance x;, update the weights based on
the gradient of the loss for that instance only:

w=w —n VLi(w; X,)

The gradient for one instance’s loss is an
approximation to the true gradient

» stochastic = random
The expected gradient is the true gradient

Adaline

The gradient descent algorithm for Adaline
updates each feature weight using the rule:

N
W +=1] Z 2 X (i — w'x;)
=1

Two main differences from perceptron:

* (y; —w'X;) is a real value, instead of a binary value
(perceptron either correct or incorrect)

» The update is based on the entire training set,
instead of one instance at a time.

Revisiting Perceptron

Perceptron has a different loss function:
L,(W, xi) = 0, Y (WTXi) >0
-yi (Ww'x;), otherwise

AN

Revisiting Perceptron

Perceptron has a different loss function:

Li(w; X;) = 0, Yi (WTXi) >0
-yi (Ww'x;), otherwise

The derivative here is 0.
No gradient descent
updates if the prediction

\ was correct.
@

Revisiting Perceptron

Perceptron has a different loss function:

Li(w; X;) =

O, Y (WTXi) >0
-yi (Ww'x;), otherwise

The derivative here is —yx;.
If x;; is positive, dL/w; will be
negative when vy, is positive,

\ so the gradient descent
update will be positive.

Revisiting Perceptron

Perceptron has a different loss function:

Li(w; x;) = | O, Yi (WTXi) >0
-yi (Ww'x;), otherwise

his means the

lassifier made an L .
nderestimate. so 1he derivative here is —yx;.

erceptron makes |f Xij IS pOSitive, dLi/Wj will be
the weights larger. negative when y; is positive,
so the gradient descent
update will be positive.

Revisiting Perceptron

Perceptron has a different loss function:

Li(w; X;) = 0, Yi (WTXi) >0
-yi (Ww'x;), otherwise

The derivative here is —yx;.
If x;; is positive, dL/w; will be
positive when y; is negative,

\ so the gradient descent
update will be negative.

Revisiting Perceptron

Perceptron has a different loss function:

Li(w; X;) = 0, Yi (WTXi) >0
-yi (Ww'x;), otherwise

The derivative doesn’t

actually exist at this point
\' (the function isn’t smooth)

Revisiting Perceptron

Perceptron has a different loss function:

Li(w; X;) = 0, Yi (WTXi) >0
-yi (Ww'x;), otherwise

A subgradient is a
generalization of the
gradient for points that are
not differentiable.

\ 0 and -yx; are both valid
& subgradients at this point.

Revisiting Perceptron

Perceptron has a different loss function:

Li(w; x;) = 0, yi (W'x;) =0
-yi (W'x;), otherwise

Perceptron is a stochastic gradient descent algorithm
using this loss function (and using the subgradient
instead of gradient)

Convexity

How do you know if you’ve found the global
minimum, or just a local minimum?

A convex function has only one minimum:

Convex \ Non-convex

Convexity

How do you know if you’ve found the global
minimum, or just a local minimum?

A convex function has only one minimum:

g(-) 4

Convexity

A concave function has only one maximum:

g(-) 4 g(+) 4

Convex Concave

A 4

Vv

r Y r oy

Sometimes people use “convex” to mean either
convex or concave

Convexity

Squared error is a convex loss function, as is the
perceptron loss.

Note: convexity means there
IS only one minimum value,
but there may be multiple
parameters that result in
that minimum value.

Summary

Most machine learning algorithms are some
combination of a loss function + an algorithm for
finding a local minimum.

« Gradient descent is a common minimizer, but there
are others.

With most of the common classification
algorithms, there is only one global minimum,
and gradient descent will find it.

» Most often: supervised functions are convex,
unsupervised functions are non-convex.

Summary

1. Initialize the parameters w to some guess
(usually all zeros, or random values)

2. Update the parameters:
w=w-n VL(w)
Nn==cq/ (2 +cCy)
3. Repeat step 2 until lIVL(w)ll < 8 or until the
maximum number of iterations is reached.

