
Boundaries, hyperplanes, and slopes 
In the lecture on support vector machines, we looked at different decision boundaries in 2D plots like 
this:  

 
In this image, line A has a larger margin than line B because it has more space separating it from the 
nearest points. A also has a smaller ||w||, because when we learned about SVMs we learned that smaller 
weights give larger margins.  
 
You might be wondering how the weights w relate to the line that is shown. Earlier in the semester I said 
that the weights represent the slope of the hyperplane, and you can visually see that B has a larger slope 
in this plot -- so why doesn't B have larger weights?  
 
Let’s discuss how the weights w relate to the slope of the decision boundary.  
  
The lines you see on the plot above are not the hyperplane wTx. One realization to have is that a line 
only has one independent variable (y=mx+b), whereas in this illustration, the instances actually have two 
features, so x and y are both independent variables for the classifier. Instead of writing wTx, let's write 
out the expanded equation for the hyperplane, using both x and y as the names of the 
features: . (Remember that 'b' is the intercept, which I usually leave out of the 
notation, but it's still there.) 
  
This equation has two independent variables which makes it a plane, not a line. So why do you see just 
a line in the plot of the decision boundary? The decision boundary isn't just the plane , 

but specifically the boundary . It's the "slice" of the plane where it passes through 0, 
which forms a line. You can also see this algebraically by rewriting this as: 



  

 
  

Now we have a line in the form of y=mx+b, where the slope corresponds to  and the y-intercept 

corresponds to . This line is the decision boundary that you see plotted. While the slope is based on 

the weights , it's different from the slope of the full plane that defines the classifier 
scores, . 
  
This all applies to more dimensions. In general, there is a hyperplane of K dimensions that defines the 
score of the classifier. The decision boundary is the set of points of that hyperplane that pass through 0 
(or, the points where the score is 0), which is going to be a hyperplane with K-1 dimensions. 
  
Now let me explain why smaller weights lead to larger margins. 
  
Remember in an SVM, instead of one decision boundary wTx=0, we have two boundaries, wTx=1 
and wTx=-1, illustrated like this: 
 

 
  
 
Following the same steps from earlier in this post, let's rewrite the boundaries wTx=1 and wTx=-1 in full, 
using x and y as the variables. 
 
 
 
 



 
The positive boundary is: 

 
 
The negative boundary is: 

 
  
Both of these boundaries are lines with the same slope, so they are parallel. The margin is the distance 
between these two parallel boundaries, which turns out to be: 
  

 
 
(Why? See https://en.wikipedia.org/wiki/Distance_between_two_straight_lines) 
  

Notice that  is the Euclidean (L2) norm of the weights. With more than two features, this 

distance generalizes to , which is what you learned in class. Therefore, a larger weight vector results 
in a smaller distance between the two boundaries, aka a smaller margin. 
  


