# INFO-2301

Michael Paul

Feb 27, 2017

Which of these photos contains a cat?







Which of these emails are spam?

#### **Mark Dredze**

to me 🖃

Let's setup a time to talk next week.

[?]Customer-Survey[?] <u4c3pa7j8@97366ka91.frro.cvg.utn.edu.ar> to E2M4RZEE6V ▼

# Congrats! You've Been Selected For \$50 Macy's Reward

program@emnlp2017.net via sun.s

to me 🖃

Dear Michael J. Paul,

We would like to invite you to serve on the Conference on Empirical Methods in Natur 2017), which will be held in Copenhagen,

What language is this person speaking?





Assign a discrete value y to input x

The possible values of y are called **classes** 

- x is usually a vector
- The dimensions of **x** correspond to **features**
- Features are properties like word counts, pixel values, etc.

Binary classification: is this photo a cat?







1

General classification: what kind of animal is in this photo?







cat cat deer

#### Classifiers

An algorithm that produces classifications is called a classifier

We'll learn about some common classifiers in this class

More if you take a machine learning course

Today, we'll look at how you can do classification with what you've already learned

Language modeling: recall that a 1-gram ("unigram") language model is a discrete distribution over words

```
P("you") = 0.012
P("the") = 0.030
P("said") = 0.0015
P("friends") = 0.0001
```

Modification: condition the word probabilities on a class

```
P("you" \mid class="Important") = 0.0127 P("you" \mid class="Spam") = 0.0201 P("the" \mid class="Important") = 0.0313 P("you" \mid class="Spam") = 0.0308 P("2301" \mid class="Important") = 0.0021 P("2301" \mid class="Spam") = 0.0000 P("winner" \mid class="Important") = 0.0001 P("winner" \mid class="Spam") = 0.0150
```

Modification: condition the word probabilities on a class

```
P("you" \mid class="Important") = 0.0127 P("you" \mid class="Spam") = 0.0201 P("the" \mid class="Important") = 0.0313 P("you" \mid class="Spam") = 0.0308 P("2301" \mid class="Important") = 0.0021 P("2301" \mid class="Spam") = 0.0000 P("winner" \mid class="Important") = 0.0001 P("winner" \mid class="Spam") = 0.0150
```

Small probability in both classes. But 150 times more common in "Spam".

# Probability of Text

Under a 1-gram model, what is the probability of the text sequence, "You are a winner"?

```
P(w_1 = "You", w_2 = "are", w_3 = "a", w_4 = "winner")
= P(w_1 = "You") \times P(w_2 = "are") \times P(w_3 = "a") \times P(w_4 = "winner")
= P(w = "You") \times P(w = "are") \times P(w = "a") \times P(w = "winner")
```

## Probability of Text

```
Now consider
P("You are a winner" | class="Important")
```

```
P(w_1 = "You", w_2 = "are", w_3 = "a", w_4 = "winner" | class="Important")
= P(w="You" | c="Imp.") \times P(w="are" | c="Imp.") \times P(w="a" | c="Imp.") \times P(w="winner" | c="Imp.")
= 0.0127*0.0103*0.0285*0.0001
= 3.728085e-10
```

## Probability of Text

```
Now consider
P("You are a winner" | class="Spam")
```

```
P(w_1 = "You", w_2 = "are", w_3 = "a", w_4 = "winner" | class="Spam")
= P(w="You" | c="Spam") \times P(w="are" | c="Spam") \times P(w="a" | c="Spam") \times P(w="winner" | c="Spam")
= 0.0201*0.0141*0.0220*0.0150
= 9.35253e-8
```

250 times more likely to see this text when it's spam

We just calculated P(text | class)

More useful for classification: P(class | text)

```
Bayes' rule: P(class | text) = P(text | class) P(class)

P(text)
```

We just calculated P(text | class)

More useful for classification: P(class | text)

Bayes' rule: 
$$P(class \mid text) = \frac{P(text \mid class) P(class)}{P(text)}$$

This is what we calculated on the previous slide (assumes you already know the language model parameters)

We just calculated P(text | class)

More useful for classification: P(class | text)

Bayes' rule: 
$$P(class | text) = P(text | class) P(class)$$

$$P(text)$$

This is the probability of observing a data instance from a class. For example, if 70% of your email is spam and 30% important, the P("Spam")=0.7 and P("Important")=0.3.

We just calculated P(text | class)

More useful for classification: P(class | text)

Bayes' rule: P(class | text) = P(text | class) P(class)P(text)



You can get P(text) by *marginalization*. But as you'll see in a minute, P(text) is not important for classification because it is constant with respect to the class.

## Naive Bayes

#### Algorithm:

- 1. Estimate the 1-gram language model parameters from data
  - We haven't talked much yet about where these probabilities come from.
     More later.
- 2. For each new data instance x:
  - 1. Calculate P(class=y | x) for all y
  - 2. Return y with the largest value of P(class=y | x)

#### Naive Bayes

Bayes: Because we use Bayes' rule

Naive: Because 1-gram models are "naïve" in that they are not a great

representation of how language actually works (in the case of text)

#### **Conditional independence:**

All dimensions of  $\mathbf{x}$  (e.g., all words) are independent, conditioned on the class. Because they are independent, we can use the product rule.

What you want:  $argmax_y P(y \mid x)$ 

This is equal to:  $argmax_v P(x | y) P(y)$ 

• We dropped the denominator because it doesn't depend on y. So the argmax will be the same if you just calculate the numerator.

What you want:  $argmax_v P(y \mid x)$ 

This is equal to:  $argmax_v log(P(y | x))$ 

- This is because log is a *monotonic* function, meaning that log(x) increases as x increases, so the maximum of the log of a function will be the same as the maximum of the function.
- This will let us take advantage of an important property: log(a\*b) = log(a) + log(b)

Example: let's classify the text "You are a winner" assuming the classes are "Spam" and "Important"

Let's assume we already have all the conditional probabilities (you will be given them in your assignment).

Then we need to calculate log(P(x|y)P(y)) for each y value, and return the argmax.

```
Score["Important"]
= log(P("You are a winner"|"Important")P("Important"))
= log(P("You are a winner"|"Important")) + log(P("Important"))
= log(P("You"|"Important")) + log(P("are"|"Important")) + log(P("a"|"Important")) + log(P("winner"|"Important")) + log(P("Important"))
```

```
Score["Spam"]
= log(P("You are a winner"|"Spam")P("Spam"))
= log(P("You are a winner"|"Spam")) + log(P("Spam"))
= log(P("You"|"Spam")) + log(P("are"|"Spam")) +
    log(P("a"|"Spam")) + log(P("winner"|" Spam")) +
    log(P(" Spam"))
```

```
If Score["Important"] > Score["Spam"]:
    return "Important"
Else
    return "Spam"
```