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Does the model fit?

* We've assumed

o Our models are right
o Qur parameter estimates are good
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Does the model fit?

* We've assumed

o Our models are right
o Qur parameter estimates are good

¢ Not always true

¢ How do we know if distributions / parameters are any good?
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Importance for Data Science

Learning the mindset

Not trusting your data

e Communicating uncertainty

Testing hypotheses
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Lincoln Moses

e Stanford Statistician
¢ Learn one thing: Use Error Bars
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Lincoln Moses

e Stanford Statistician
¢ Learn one thing: Use Error Bars

e After visiting US government: Use
data
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Point Estimates Lie

\

e Reasoning 2 aul and Boyd Hypothesis Testing



Point Estimates Lie

\/

e Reasoning 2 aul and Boyd Hypothesis Testing



So how can you make a decision?

e Error bars help, but not systematic

* Make the point that decisions need to not just look at single estimates
but distributions

e Statistical Test: Deciding whether a hypothesis is true or not
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Statistical Test Lingo

Null hypothesis

test statistic
* p-value
® p-hacking
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Null hypothesis

Null Hypothesis

A statement that can be validated
through a statistic derived from
observations.

e Often status quo
e Goal prove false: “reject the null”
e Phrased in terms of distributions

Examples
e Average body temperature 98.6?

e Voting republican and education
independent?

T CAN'T BELEVE SCHOOLS
ARE St TEACHING KIDS
ABOUT THE NULL HYROTHESIS.

I REMEMBER READING A BIG
STUDY THAT CONCLUSIVELY
DISPROVED IT MEARS AGO.

No

I
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Body temperature

n=130, x = 98.249, standard deviation s = 0.7332.

* Not exactly equal (but wouldn’t expect that)
¢ [s the difference meaningful?

* Null hypothesis, Hy : 4 =98.6

e Alternative hypothesis, H,: u 7~ 98.6
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What can happen

Reality

True False

Carrect
5 o True Type!_
o ¢ @ False Positive
a 3
@ Typell Correct

o

= alse False Negative @
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Boy who cried wolf

e Null hypothesis (status quo): no
wolf
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Boy who cried wolf

e Null hypothesis (status quo): no
wolf

e First error, Type |: villagers
believed there was wolf (but there
wasn’t)
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Boy who cried wolf

e Null hypothesis (status quo): no
wolf

e First error, Type I: villagers
believed there was wolf (but there
wasn’t)

e Second error, Type Il: villagers
believed there was no wolf (when
there was)
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Boy who cried wolf

Null hypothesis (status quo): no
wolf

First error, Type I: villagers
believed there was wolf (but there
wasn’t)

Second error, Type Il: villagers
believed there was no wolf (when
there was)

Type | and Type Il in that order
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Test Statistic

* Measurement of how far observations deviate from null hypothesis (e.g.,
x far from u)
e Test statistic is paired with a distribution that measures deviation

* Lower probability test statistics let you reject the null
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p-value

Probability

Null
Hypothesis

P value

Observed
size of effect

Probability of null hypothesis
being true

Lower is better

Common critical values a: 0.05,
0.01

We’ll see examples in a bit
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Goodness of Fit

Suppose we see a die rolled 36 times with the following totals.

1 2 3 4 5 6
8 5 9 2 7 5

® H,: fair die

* How far does it deviate from uniform distribution?
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Goodness of Fit

Suppose we see a die rolled 36 times with the following totals.

1 2 3 4 5 6
8 5 9 2 7 5

® H,: fair die
e How far does it deviate from uniform distribution?

* 2 distribution
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Chi-Square Definition

Let Z,,...Z, be independent random variables distributed N(0,1). The y?2
distribution with n degrees of freedom can be defined by

1=+ 22+ + 22 (1)
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Chi-Square Definition

af =1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Chi-Square Distributions

* 1(s,x)= [, = exp{—t} ot
. 1“(x)5f0oo texp{—t}at, T'(n)=(n—1)!
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Goodness of Fit

D Ol W
D N
D N O
o» 0o

1 2
Observed 8 5
Expected 6 6

e [f this were a fair die, all observed counts would be close to expected
e We can summarize this with a test statistic

Z (O—E)? @)

E;
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Goodness of Fit

D Ol W
D N
D N O
o» 0o

1 2
Observed 8 5
Expected 6 6

If this were a fair die, all observed counts would be close to expected
e We can summarize this with a test statistic

Z (O—E)? @)

E;

* In our example, 5.33
* Approximately distributed as y? with k — 1 degrees of freedom
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Test Statistic and p-value

0.9

fix)

0.6

0.3

0.0

* Expected value of y2 with df=5 is 5
e 5.33 is not that far away
¢ 0.38 probability of rejecting the null
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Degrees of Freedom

* We condition on the number of observations (36)
e So after filling in the cells for five observations, one is known

e So total of k—1 degrees of freedom
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Degrees of Freedom

We condition on the number of observations (36)

So after filling in the cells for five observations, one is known

So total of k—1 degrees of freedom

* Important because it specifies which y? distribution to use
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Distributional Independence

* If x and y are independent, P(x,y) = P(x)P(y).
e Can we test of two distributions are independent?
* This also is a 2 test
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Example: Collocations

Selectional preferences: “strong tea”, not “powerful tea”

e Phrases: “intents and purposes”, “helter skelter”

Some words just go together more than others

l.e., they’re not independent
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Can’t use frequency

Most frequent bigrams are just the
most frequent words. (Independent
distribution.)

80871
58841
26430
21842
21839
18568
16121
15630
15494
13899
13689
13361

of the
in the
to the
on the
for the
and the
that the
at the
to be
ina

of a

by the
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Contingency tables

w, = NEew wy 7 New

wy = companies 8 4667
(new companies)  (e.g., old companies)

wq £ companies 15820 14287181
(e.g., new machines)  (e.g., old machines)

Hypothesis Testing I: Zz for collocations | 50f8

INFO-2301: Quantitative Reasoning2 | Paul and Boyd-Graber



Contingency tables: degrees of freedom

e Given row and column totals, one cell can fill in the rest (as you did in
earlier practice problems)

¢ In general, for a contingency table with r rows and ¢ columns,
(r—1)(c—1) degrees of freedom
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Observed

Wy = new  wj 7= new

w, = companies 8 4667
W, = companies 15820 14287181




Observed

Wy = new Wy 7= new
w, = companies 8 4667 4675
W, 7~ companies 15820 14287181 14303001
15828 14291848 14307676

Expected

Wy = new Wy 7= new

W, = companies osas 200214307676 =5.17  1669.83
W, 7~ companies 15822.83 14287178.17




Observed

Wy = new Wy 7 new
w, = companies 8 4667
W, = companies 15820 14287181

Expected

Wy = new  w; = new
w, = companies 5.17 1669.83
w, 7~ companies 15822.83 14287178.17

, (8—5.17)2 (4667—1669.83)> (15820—15822.83)?

= + -
d 5.17 4667 15820
(14287181 —14287178.17)2

14287181




Observed

Wy = new Wy 7 new
w, = companies 8 4667
W, = companies 15820 14287181

Expected

Wy = new  w; = new
w, = companies 5.17 1669.83
w, 7~ companies 15822.83 14287178.17

, (8—5.17)? (4667—1669.83)> (15820—15822.83)?

= + +
£ 5.17 4667 15820
(14287181 —14287178.17)?2

14287181




Observed

Wy = new Wy 7 new
w, = companies 8 4667
W, = companies 15820 14287181

Expected

Wy = new  w; = new
w, = companies 5.17 1669.83
w, 7~ companies 15822.83 14287178.17

, (8—5.17)2 (4667—1669.83)> (15820—15822.83)2

= + -
d 5.17 4667 15820
(14287181 —14287178.17)2

14287181




Observed

Wy = new Wy 7 new
w, = companies 8 4667
W, = companies 15820 14287181

Expected

Wy = new  w; = new
w, = companies 5.17 1669.83
w, 7~ companies 15822.83 14287178.17

, (8—5.17)2 (4667—1669.83)%> (15820—15822.83)?

= + -
d 5.17 4667 15820
(14287181 —14287178.17)2

14287181




Observed

Wy = new Wy 7 new
w, = companies 8 4667
W, = companies 15820 14287181

Expected

Wy = new  w; = new
w, = companies 5.17 1669.83
w, 7~ companies 15822.83 14287178.17

, (8—5.17)2 (4667—1669.83)> (15820—15822.83)?

= + +
“ 5.17 4667 15820
(14287181 —14287178.17)?2

14287181




Observed

Wy = new Wy 7 new

w, = companies 8 4667
W, = companies 15820 14287181
Expected
Wy = new  w; = new
w, = companies 5.17 1669.83
w, 7~ companies 15822.83 14287178.17
, (8—5.17)2 (4667—1669.83)> (15820—15822.83)?
X =

5.17

4667
(14287181 —14287178.1 7)2

15820

14287181

=1.55



Can we reject the null?

p=0.2131
12 W v=1

Jx)

0 1.550 B

Hypothesis Testing for collocations
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x? is not exact

* y2is not exact

e Should not use if any cells are <5

a b
d

(a:b> (Ctd> _(@+d)(c+ad)! (a+c) (;;+d)!

n al bl ¢! d n!
a—+c

e Fischer’s exact test (hypergeometric distribution)
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p-hacking

JELLY BEANS WE FOUND NO THAT SETTLES THAT.
CAUSE ACNE! LINK BETWEEN !
THEAR IT5 ONLY
SCIENTISTS)! JELLY BERNS AND A CERTAIN COLOR
INVESTIGATE! ANE (P > 0.05). THAT CAUSES IT.
BUT Weke ,
Pineager! SC'E“TSTS
FINEL H"I'INECWT'
N

‘@ r

@k
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p-hacking

WE FOUND NO WE FOUND NO WE FOUND MO WE FOUND NO WE FOUNDNO
LINK GETWEEN LINK. BGETWEEN LINK BETWEEN LiNK BETWEEN LINK BETWEEN
PURPLE JELLY BROWN JELLY Pinec. JELLY BLWE JEWY TEAL TELLY
BEANS D ANE BEANS PHD AMNE. | | BEANS AND ANE. BEANS D ANNE BEANS AD ANE
(p>0.05), (p>005) (p>0.05), (p>005) (p>0.05)
/ ! / / /
WE FOUNDNO WE FOUND NO WE FOUND NO WE FOUND NG WE FOUNDNO
LINK BETWEEN LINK, BETWEEN LUNK GETWEEN LiNK BETWEEN LINK BETWEEN
SALMON TELLY RED JeLy TURGUOISE JELLY | | MAGENTR JELY YELLOW JELLY
BEANS AHD ANE BEANS AND AONE BEMMDH@JE BEANS AHD ANE BEANS AHD ANNE
(p>005) (p>0.05) p:-oos) (P>005) (p>0.05)
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p-hacking

veroon | [ werumon | [ve rmono | [we rooono | [ve
UNKGEWEEN || LNKGEWEEN | | LNKGEMEEN | LNKGEWEEN | | Lk GEVEN
o Jew || i BwE TEAL
BEAS MDAOE POAOE. | | BeRYS MDAOE GEANS ROROE
(P>005), (P>005), (P>005). (P>005). (P>005),
/ / /

WE RuoNo o | [vErwono | [ weruono
UNKGEWEEN | | LNKBEVEEN | | LNk UNKGEWEEN | | LINK GEIVEEN
SALPON TEUY Jeuy TRGUOISE JEU | | MAGeATR JEUY Fur
AORCIE. PoRoE | | Beavs Ao ANE ROROE
(P>0.05). (P>0.05). (P>005) (P>005) (P>0.05).
/ / / /
veroon | [weroono | [veruone I ve oo & WE RUNON
unkaeveen || uvkeevey | | onkeeven Il oncoevess [l unk Gaves
GRe TAN JEuY O Fewy oren euy (| nae Fwy
eemsropoe | | seasmopoe | | ceasmopoe |l cemsmoroe |l ceas rore
(p>005). (P>005). (p>005) (p<00s) (p>005).

e ronono | [ Ve rovono | | we roono | | WE roovono | | W rouono
UNKGEMEEN || UNKGEWEEN | [ LNKGEMEEN | | LNKGEMEEN | | LNK GEREEN
Dt Fuy Bk JEUY PEACH JEUY OReyNGE JEUY

BEAS OROE | | BERYS D AOE oRoE | | Beavs moROE | | BERAVS MDRGE
(P>005). (P>0.05). (P>0.05). (P>005) (P>0.05).
/ / / /
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p-hacking

= News ==
GREEN JELLY
BEANS LINKED

T ACNE! .d

957 Conf1DENE




Bonferroni Correction

¢ If you conduct multiple statistical tests, you must divide a by number of
tests

¢ If you have m tests and reject null at 0.05 for any of them, chance of
Type | error is multiplied by m

4ofa
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