

College of Media, Communication and Information

Logistic Regression

INFO-2301: Quantitative Reasoning 2 Michael Paul and Jordan Boyd-Graber SLIDES ADAPTED FROM HINRICH SCHÜTZE

- Statistical classification: p(y|x)
- y is typically a Bernoulli or multinomial outcome
- Classification uses: ad placement, spam detection
- Building block of other machine learning methods

Logistic Regression: Definition

- Weight vector β_i
- Observations X_i
- "Bias" β_0 (like intercept in linear regression)

$$P(Y=0|X) = \frac{1}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
(1)
$$P(Y=1|X) = \frac{\exp[\beta_0 + \sum_i \beta_i X_i]}{1 + \exp[\beta_0 + \sum_i \beta_i X_i]}$$
(2)

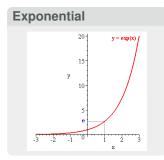
For shorthand, we'll say that

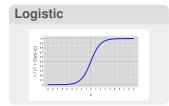
$$P(Y=0|X) = \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
(3)

$$P(Y=1|X) = 1 - \sigma(-(\beta_0 + \sum_i \beta_i X_i))$$
(4)

• Where
$$\sigma(z) = \frac{1}{1 + exp[-z]}$$

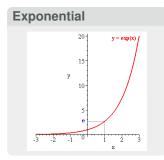
What's this "exp" doing?

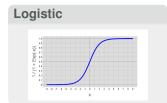




- exp[x] is shorthand for e^x
- *e* is a special number, about 2.71828
 - *e^x* is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.

What's this "exp" doing?





- exp[x] is shorthand for e^x
- *e* is a special number, about 2.71828
 - *e^x* is the limit of compound interest formula as compounds become infinitely small
 - It's the function whose derivative is itself
- The "logistic" function is $\sigma(z) = \frac{1}{1+e^{-z}}$
- Looks like an "S"
- Always between 0 and 1.
 - Allows us to model probabilities
 - Different from linear regression

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 1: Empty Document? X = {}

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 1: Empty Document? $X = \{\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} =$$

• $P(Y=1) = \frac{\exp[0.1]}{1+\exp[0.1]} =$

• What does Y = 1 mean?

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 1: Empty Document? X = {}

•
$$P(Y=0) = \frac{1}{1+\exp[0.1]} = 0.48$$

•
$$P(Y=1) = \frac{\exp[0.1]}{1 + \exp[0.1]} = 0.52$$

Bias β₀ encodes the prior probability of a class

feature	coefficient	weight	
bias	eta_0	0.1	
"viagra"	eta_1	2.0	_
"mother"	β_2	-1.0	Exa
"work"	eta_3	-0.5	<i>X</i> =
"nigeria"	β_4	3.0	

Example 2	
$X = \{Mother, Nigeria\}$	

feature	coefficient	weight
bias	β_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} =$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} =$$

 Include bias, and sum the other weights

feature	coefficient	weight
bias	β_0	0.1
"viagra"	β_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 2

 $X = \{Mother, Nigeria\}$

•
$$P(Y=0) = \frac{1}{1+\exp[0.1-1.0+3.0]} = 0.11$$

•
$$P(Y=1) = \frac{\exp[0.1-1.0+3.0]}{1+\exp[0.1-1.0+3.0]} = 0.88$$

 Include bias, and sum the other weights

feature	coefficient	weight
bias	eta_0	0.1
"viagra"	eta_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 3 $X = \{Mother, Work, Viagra, Mother\}$

• What does Y = 1 mean?

feature	coefficient	weight
bias	β_0	0.1
"viagra"	β_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 3

X = {Mother, Work, Viagra, Mother}

•
$$P(Y=0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} =$$

• $P(Y-1) =$

•
$$P(Y=1) =$$

 $\frac{\exp[0.1-1.0-0.5+2.0-1.0]}{1+\exp[0.1-1.0-0.5+2.0-1.0]} =$

 Multiply feature presence by weight

feature	coefficient	weight
bias	β_0	0.1
"viagra"	β_1	2.0
"mother"	β_2	-1.0
"work"	eta_3	-0.5
"nigeria"	eta_4	3.0

Example 3

X = {Mother, Work, Viagra, Mother}

•
$$P(Y=0) = \frac{1}{1 + \exp[0.1 - 1.0 - 0.5 + 2.0 - 1.0]} = 0.60$$

• $P(Y=1) =$

$$\frac{\exp\left[0.1-1.0-0.5+2.0-1.0\right]}{1+\exp\left[0.1-1.0-0.5+2.0-1.0\right]} = 0.30$$

College of Media, Communication and Information

Logistic Regression

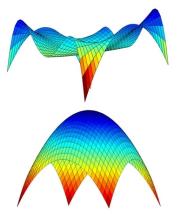
INFO-2301: Quantitative Reasoning 2 Michael Paul and Jordan Boyd-Graber

$$\ell \equiv \ln p(Y|X,\beta) = \sum_{j} \ln p(y^{(j)}|x^{(j)},\beta)$$
(1)
= $\sum_{j} y^{(j)} \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)} \right) - \ln \left[1 + \exp \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)} \right) \right]$ (2)

$$\ell \equiv \ln p(Y|X,\beta) = \sum_{j} \ln p(y^{(j)}|x^{(j)},\beta)$$
(1)
= $\sum_{j} y^{(j)} \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)} \right) - \ln \left[1 + \exp \left(\beta_0 + \sum_{i} \beta_i x_i^{(j)} \right) \right]$ (2)

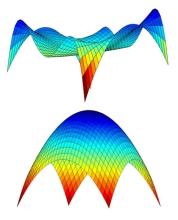
Training data (y, x) are fixed. Objective function is a function of β ... what values of β give a good value.

Convexity



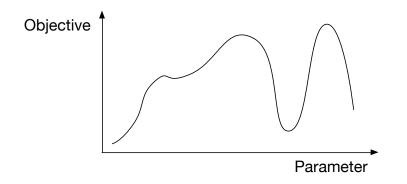
- Convex function
- Doesn't matter where you start, if you "walk up" objective

Convexity

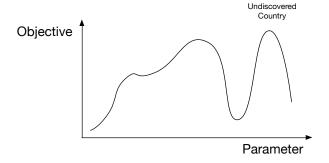


- Convex function
- Doesn't matter where you start, if you "walk up" objective
- Gradient!

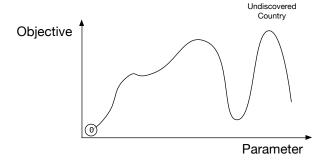
Goal



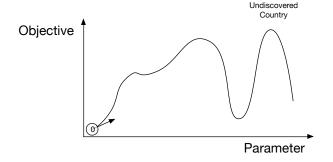
Goal



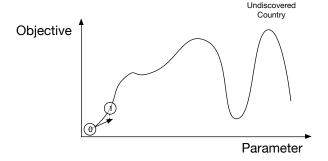
Goal



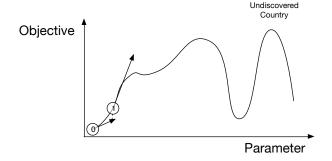
Goal



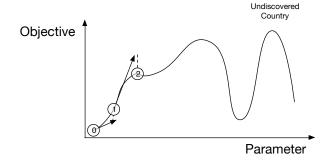
Goal



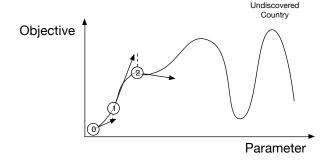
Goal



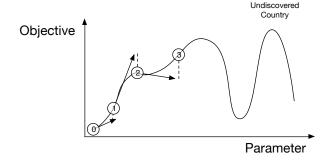
Goal



Goal



Goal



Goal

Optimize log likelihood with respect to variables eta



Luckily, (vanilla) logistic regression is convex

College of Media, Communication and Information

Logistic Regression

INFO-2301: Quantitative Reasoning 2 Michael Paul and Jordan Boyd-Graber SLIDES ADAPTED FROM WILLIAM COHEN To ease notation, let's define

$$\pi_i = \frac{\exp\beta^T x_i}{1 + \exp\beta^T x_i} \tag{1}$$

Our objective function is

$$\ell = \sum_{i} \log p(y_i | x_i) = \sum_{i} \ell_i = \sum_{i} \begin{cases} \log \pi_i & \text{if } y_i = 1 \\ \log(1 - \pi_i) & \text{if } y_i = 0 \end{cases}$$
(2)

Apply chain rule:

$$\frac{\partial \ell}{\partial \beta_j} = \sum_i \frac{\partial \ell_i(\vec{\beta})}{\partial \beta_j} = \sum_i \begin{cases} \frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} & \text{if } y_i = 1\\ \frac{1}{1 - \pi_i} \left(-\frac{\partial \pi_i}{\partial \beta_j} \right) & \text{if } y_i = 0 \end{cases}$$
(3)

If we plug in the derivative,

$$\frac{\partial \pi_i}{\partial \beta_j} = \pi_i (1 - \pi_i) x_j, \tag{4}$$

we can merge these two cases

$$\frac{\partial \ell_i}{\partial \beta_j} = (\mathbf{y}_i - \pi_i) \mathbf{x}_j. \tag{5}$$

Gradient

$$\nabla_{\beta}\ell(\vec{\beta}) = \left[\frac{\partial\ell(\vec{\beta})}{\partial\beta_{0}}, \dots, \frac{\partial\ell(\vec{\beta})}{\partial\beta_{n}}\right]$$
(6)

Update

$$\Delta \beta \equiv \eta \nabla_{\beta} \ell(\vec{\beta})$$

$$\beta'_{i} \leftarrow \beta_{i} + \eta \frac{\partial \ell(\vec{\beta})}{\partial \beta_{i}}$$
(8)

Gradient

$$\nabla_{\beta}\ell(\vec{\beta}) = \left[\frac{\partial\ell(\vec{\beta})}{\partial\beta_{0}}, \dots, \frac{\partial\ell(\vec{\beta})}{\partial\beta_{n}}\right]$$
(6)

Update

$$\Delta \beta \equiv \eta \nabla_{\beta} \ell(\vec{\beta}) \tag{7}$$

$$\beta_i' \leftarrow \beta_i + \eta \frac{\partial \mathcal{L}(\beta)}{\partial \beta_i} \tag{8}$$

Why are we adding? What would well do if we wanted to do descent?

Gradient

$$\nabla_{\beta}\ell(\vec{\beta}) = \left[\frac{\partial\ell(\vec{\beta})}{\partial\beta_{0}}, \dots, \frac{\partial\ell(\vec{\beta})}{\partial\beta_{n}}\right]$$
(6)

Update

$$\Delta \beta \equiv \eta \nabla_{\beta} \ell(\vec{\beta})$$

$$\beta'_{i} \leftarrow \beta_{i} + \eta \frac{\partial \ell(\vec{\beta})}{\partial \beta_{i}}$$
(8)

 η : step size, must be greater than zero

Gradient

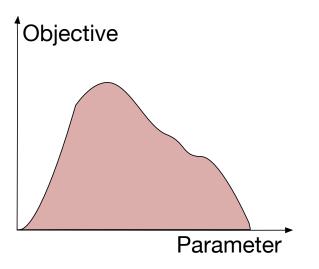
$$\nabla_{\beta}\ell(\vec{\beta}) = \left[\frac{\partial\ell(\vec{\beta})}{\partial\beta_{0}}, \dots, \frac{\partial\ell(\vec{\beta})}{\partial\beta_{n}}\right]$$
(6)

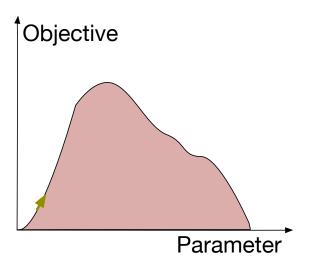
Update

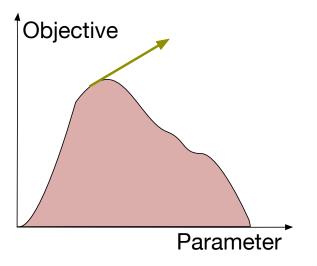
$$\Delta \beta \equiv \eta \nabla_{\beta} \ell(\vec{\beta})$$

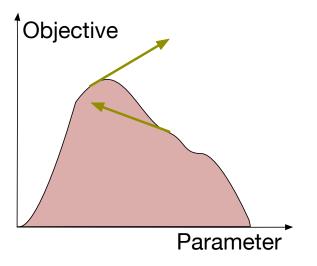
$$\beta'_{i} \leftarrow \beta_{i} + \eta \frac{\partial \ell(\vec{\beta})}{\partial \beta_{i}}$$
(8)

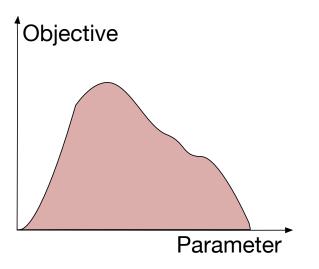
NB: Conjugate gradient is usually better, but harder to implement











- Our datasets are big (to fit into memory)
- ... or data are changing / streaming

- Our datasets are big (to fit into memory)
- ... or data are changing / streaming
- Hard to compute true gradient

$$\ell(\beta) \equiv \mathbb{E}_{x} \left[\nabla \ell(\beta, x) \right]$$
(9)

Average over all observations

- Our datasets are big (to fit into memory)
- ... or data are changing / streaming
- Hard to compute true gradient

$$\ell(\beta) \equiv \mathbb{E}_{x} \left[\nabla \ell(\beta, x) \right]$$
(9)

- Average over all observations
- What if we compute an update just from one observation?

Pretend it's a pre-smartphone world and you want to get to Union Station

Given a **single observation** *x_i* chosen at random from the dataset,

$$\beta_{j} \leftarrow \beta_{j}' + \eta \left[y_{i} - \pi_{i} \right] x_{i,j} \tag{10}$$

Given a **single observation** *x_i* chosen at random from the dataset,

$$\beta_{j} \leftarrow \beta_{j}' + \eta \left[y_{i} - \pi_{i} \right] x_{i,j}$$
(10)

Examples in class.

- Initialize a vector B to be all zeros
- **②** For *t* = 1,...,*T*
 - For each example \vec{x}_i , y_i and feature *j*:
 - Compute $\pi_i \equiv \Pr(y_i = 1 | \vec{x}_i)$
 - Set $\beta[j] = \beta[j]' + \lambda(y_i \pi_i)x_i$
- ③ Output the parameters β_1, \ldots, β_d .

- Logistic Regression: Regression for outputting Probabilities
- Intuitions similar to linear regression
- We'll talk about feature engineering for both next time