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What are we talking about?

• Statistical classification: p(y |x)
• y is typically a Bernoulli or multinomial outcome

• Classification uses: ad placement, spam detection

• Building block of other machine learning methods
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Logistic Regression: Definition

• Weight vector βi
• Observations Xi
• “Bias” β0 (like intercept in linear regression)

P(Y = 0|X) =
1

1+exp
�

β0 +
∑

i βiXi

� (1)

P(Y = 1|X) =
exp

�

β0 +
∑

i βiXi

�

1+exp
�

β0 +
∑

i βiXi

� (2)

• For shorthand, we’ll say that

P(Y = 0|X) =σ(−(β0 +
∑

i

βiXi)) (3)

P(Y = 1|X) = 1−σ(−(β0 +
∑

i

βiXi)) (4)

• Where σ(z) = 1
1+exp[−z]
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What’s this “exp” doing?

Exponential

Logistic

• exp [x] is shorthand for ex

• e is a special number, about 2.71828

◦ ex is the limit of compound interest
formula as compounds become
infinitely small

◦ It’s the function whose derivative is
itself

• The “logistic” function is σ(z) = 1
1+e−z

• Looks like an “S”

• Always between 0 and 1.

◦ Allows us to model probabilities
◦ Different from linear regression
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1 mean?

Example 1: Empty Document?

X = {}

• P(Y = 0) = 1
1+exp [0.1] =

• P(Y = 1) = exp [0.1]
1+exp [0.1] =

• Bias β0 encodes the prior
probability of a class
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“viagra” β1 2.0
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“nigeria” β4 3.0

• What does Y = 1 mean?

Example 1: Empty Document?

X = {}

• P(Y = 0) = 1
1+exp [0.1] = 0.48

• P(Y = 1) = exp [0.1]
1+exp [0.1] = 0.52

• Bias β0 encodes the prior
probability of a class
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1 mean?

Example 2

X = {Mother,Nigeria}
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1 mean?

Example 2

X = {Mother,Nigeria}

• P(Y = 0) = 1
1+exp [0.1−1.0+3.0] =

• P(Y = 1) = exp [0.1−1.0+3.0]
1+exp [0.1−1.0+3.0] =

• Include bias, and sum the other
weights
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• What does Y = 1 mean?

Example 2

X = {Mother,Nigeria}

• P(Y = 0) = 1
1+exp [0.1−1.0+3.0] =

0.11

• P(Y = 1) = exp [0.1−1.0+3.0]
1+exp [0.1−1.0+3.0] =

0.88

• Include bias, and sum the other
weights
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1 mean?

Example 3

X = {Mother,Work,Viagra,Mother}
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1 mean?

Example 3

X = {Mother,Work,Viagra,Mother}

• P(Y = 0) =
1

1+exp [0.1−1.0−0.5+2.0−1.0] =

• P(Y = 1) =
exp [0.1−1.0−0.5+2.0−1.0]

1+exp [0.1−1.0−0.5+2.0−1.0] =

• Multiply feature presence by
weight
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Logistic Regression Example

feature coefficient weight
bias β0 0.1

“viagra” β1 2.0
“mother” β2 −1.0
“work” β3 −0.5

“nigeria” β4 3.0

• What does Y = 1 mean?

Example 3

X = {Mother,Work,Viagra,Mother}

• P(Y = 0) =
1

1+exp [0.1−1.0−0.5+2.0−1.0] = 0.60

• P(Y = 1) =
exp [0.1−1.0−0.5+2.0−1.0]

1+exp [0.1−1.0−0.5+2.0−1.0] = 0.30

• Multiply feature presence by
weight
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Logistic Regression: Objective Function

`≡ lnp(Y |X ,β) =
∑

j

lnp(y(j) |x(j),β) (1)

=
∑

j

y(j)
�

β0 +
∑

i

βix
(j)
i

�

− ln

�

1+exp

�

β0 +
∑

i

βix
(j)
i

��

(2)

Training data (y ,x) are fixed. Objective function is a function of β . . . what
values of β give a good value.
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Convexity

• Convex function

• Doesn’t matter where you start, if
you “walk up” objective

• Gradient!
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Gradient Ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

Parameter

Objective
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Gradient Ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

Undiscovered
Country

Parameter

Objective
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Gradient Ascent (non-convex)

Goal

Optimize log likelihood with respect to variables β

1

0

2

3

Undiscovered
Country

Parameter

Objective

Luckily, (vanilla) logistic regression is convex
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Gradient for Logistic Regression

To ease notation, let’s define

πi =
expβT xi

1+expβT xi
(1)

Our objective function is

`=
∑

i

logp(yi |xi) =
∑

i

`i =
∑

i

¨

logπi if yi = 1

log(1−πi) if yi = 0
(2)
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Taking the Derivative

Apply chain rule:

∂ `

∂ βj
=
∑

i

∂ `i( ~β)

∂ βj
=
∑

i

(

1
πi

∂ πi
∂ βj

if yi = 1
1

1−πi

�

− ∂ πi
∂ βj

�

if yi = 0
(3)

If we plug in the derivative,

∂ πi

∂ βj
=πi(1−πi)xj , (4)

we can merge these two cases

∂ `i

∂ βj
= (yi −πi)xj . (5)
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Gradient for Logistic Regression

Gradient

∇β`( ~β) =
�

∂ `( ~β)

∂ β0
, . . . ,

∂ `( ~β)

∂ βn

�

(6)

Update

∆β ≡η∇β`( ~β) (7)

β ′i ←βi +η
∂ `( ~β)

∂ βi
(8)
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Gradient for Logistic Regression

Gradient

∇β`( ~β) =
�

∂ `( ~β)

∂ β0
, . . . ,

∂ `( ~β)

∂ βn

�

(6)

Update

∆β ≡η∇β`( ~β) (7)

β ′i ←βi +η
∂ `( ~β)

∂ βi
(8)

Why are we adding? What would well do if we wanted to do descent?
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Gradient for Logistic Regression

Gradient

∇β`( ~β) =
�

∂ `( ~β)

∂ β0
, . . . ,

∂ `( ~β)

∂ βn

�

(6)

Update

∆β ≡η∇β`( ~β) (7)

β ′i ←βi +η
∂ `( ~β)

∂ βi
(8)

η: step size, must be greater than zero
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Gradient for Logistic Regression

Gradient

∇β`( ~β) =
�

∂ `( ~β)

∂ β0
, . . . ,

∂ `( ~β)

∂ βn

�

(6)

Update

∆β ≡η∇β`( ~β) (7)

β ′i ←βi +η
∂ `( ~β)

∂ βi
(8)

NB: Conjugate gradient is usually better, but harder to implement
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Choosing Step Size

Parameter

Objective
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Parameter
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Approximating the Gradient

• Our datasets are big (to fit into memory)

• . . . or data are changing / streaming

• Hard to compute true gradient

`(β)≡Ex [∇`(β ,x)] (9)

• Average over all observations

• What if we compute an update just from one observation?
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Getting to Union Station

Pretend it’s a pre-smartphone world and you want to get to Union Station
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Stochastic Gradient for Logistic Regression

Given a single observation xi chosen at random from the dataset,

βj ←β ′j +η [yi −πi ]xi ,j (10)

Examples in class.
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Algorithm

1 Initialize a vector B to be all zeros

2 For t = 1, . . . ,T

◦ For each example ~xi ,yi and feature j :

• Compute πi ≡ Pr(yi = 1 | ~xi)
• Set β [j] =β [j]′+λ(yi −πi)xi

3 Output the parameters β1, . . . ,βd .
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Wrapup

• Logistic Regression: Regression for outputting Probabilities

• Intuitions similar to linear regression

• We’ll talk about feature engineering for both next time
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