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Linear Regression
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Data are the set of inputs and outputs, D =
�

(xi ,yi)
	n

i=1
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In linear regression, the goal is to predict y from x using a linear function
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Examples of linear regression:

• given a child’s age and gender, what is his/her height?

• given unemployment, inflation, number of wars, and economic growth,
what will the president’s approval rating be?

• given a browsing history, how long will a user stay on a page?
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Linear Regression
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(xi, yi )

f (x) = !0 +!1x
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Multiple Covariates

Often, we have a vector of inputs where each represents a different feature
of the data

x= (x1, . . . ,xp)

The function fitted to the response is a linear combination of the covariates

f (x) =β0 +
p
∑

j=1

βjxj
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Multiple Covariates

• Often, it is convenient to represent x as (1,x1, . . . ,xp)

• In this case x is a vector, and so is β (we’ll represent them in bold face)

• This is the dot product between these two vectors

• This then becomes a sum

βx=
p
∑

j=1

βjxj
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Hyperplanes: Linear Functions in Multiple Dimensions
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Covariates

• Do not need to be raw value of x1,x2, . . .

• Can be any feature or function of the data:

◦ Transformations like x2 = log(x1) or x2 = cos(x1)
◦ Basis expansions like x2 = x2

1 , x3 = x3
1 , x4 = x4

1 , etc
◦ Indicators of events like x2 = 1{−1≤x1≤1}
◦ Interactions between variables like x3 = x1x2

• Because of its simplicity and flexibility, it is one of the most widely
implemented regression techniques
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Prediction

• After finding β̂ , we would like to predict an output value for a new set of
covariates

• We just find the point on the line that corresponds to the new input:

ŷ =β0 +β1x (1)
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Prediction

• After finding β̂ , we would like to predict an output value for a new set of
covariates

• We just find the point on the line that corresponds to the new input:

ŷ = 1.0+0.5x (1)

y=1.0 + 0.5x
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Prediction

• After finding β̂ , we would like to predict an output value for a new set of
covariates

• We just find the point on the line that corresponds to the new input:

ŷ = 1.0+0.5 ∗5 (1)

y=1.0 + 0.5x

x=5.0
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Prediction

• After finding β̂ , we would like to predict an output value for a new set of
covariates

• We just find the point on the line that corresponds to the new input:

ŷ = 3.5 (1)

y=1.0 + 0.5x

x=5.0
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Fitting a Linear Regression
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Idea: minimize the Euclidean distance between data and fitted line

RSS(β) =
1

2

n
∑

i=1

(yi −βxi)
2
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How to Find β

• Use calculus to find the value of β that minimizes the RSS
• The optimal value is

β̂ =

∑n
i=1 yixi
∑n

i=1 x2
i
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Probabilistic Interpretation

• Our analysis so far has not included any probabilities

• Linear regression does have a probabilisitc (probability model-based)
interpretation
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Probabilistic Interpretation

• Linear regression assumes that response values have a Gaussian
distribution around the linear mean function,

Yi |xi ,β ∼N(xiβ ,σ2)
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• Minimizing RSS is equivalent to maximizing conditional likelihood
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Deriving Least Squares Regression

• Common theme in data science:

◦ Build model
◦ Write error model
◦ Derive how to minimize error
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Model and Objective

Model

yi = b0 + b1xi + ei (1)

Error

ei = yi −b1xi −b0 = ei (2)

Objective

`≡
∑

i

e2
i (3)
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Partial Derivatives

Intercept

∂ `

∂ b0
=
∂
∑

i(yi −b0−b1xi)
2

∂ b0
=

−2
∑

i

(yi −b0−b1xi) (4)

Slope

∂ `

∂ b1
=
∂
∑

i(yi −b0−b1xi)
2

∂ b1
= −2

∑

i

xi(yi −b0−b1xi) (5)
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System of Equations with Two Unknowns

Solve for Intercept

(6)
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System of Equations with Two Unknowns

Solve for Intercept

0 =−2
∑

i

(yi −b0−b1xi) (6)

(7)
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System of Equations with Two Unknowns

Solve for Intercept

0 =−2
∑

i

(yi −b0−b1xi) (6)

0 =
∑

i

yi −
∑

i

b0−bi

∑

i

xi (7)

(8)

Multiply by − 1
2 , distribute sum
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System of Equations with Two Unknowns

Solve for Intercept

0 =−2
∑

i

(yi −b0−b1xi) (6)

0 =
∑

i

yi −
∑

i

b0−bi

∑

i

xi (7)

Nb0 =
∑

i

yi −bi

∑

i

xi (8)

(9)

b0 is constant, so
∑

i b0 = Nb0, move to LHS
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System of Equations with Two Unknowns

Solve for Intercept

0 =−2
∑

i

(yi −b0−b1xi) (6)

0 =
∑

i

yi −
∑

i

b0−bi

∑

i

xi (7)

Nb0 =
∑

i

yi −bi

∑

i

xi (8)

b0 =

�∑

i yi

N

�

−b1

�∑

i xi

N

�

(9)

(10)

Divide by N
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System of Equations with Two Unknowns

Solve for Intercept

0 =−2
∑

i

(yi −b0−b1xi) (6)

0 =
∑

i

yi −
∑

i

b0−bi

∑

i

xi (7)

Nb0 =
∑

i

yi −bi

∑

i

xi (8)

b0 =

�∑

i yi

N

�

−b1

�∑

i xi

N

�

(9)

b0 =ȳ −b1x̄ (10)
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System of Equations with Two Unknowns

Solve for Intercept

b0 =ȳ −b1x̄ (6)

Solve for Slope

(7)
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System of Equations with Two Unknowns

Solve for Intercept

b0 =ȳ −b1x̄ (6)

Solve for Slope

0 =−2
∑

i

xi(yi −b0−b1xi) (7)

(8)
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System of Equations with Two Unknowns

Solve for Intercept

b0 =ȳ −b1x̄ (6)

Solve for Slope

0 =−2
∑

i

xi(yi −b0−b1xi) (7)

0 =
∑

i

xiyi −b0

∑

i

xi −
∑

i

b1x2
i (8)

(9)

Multiply by − 1
2 , distribute sum and xi
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System of Equations with Two Unknowns

Solve for Intercept

b0 =ȳ −b1x̄ (6)

Solve for Slope

0 =−2
∑

i

xi(yi −b0−b1xi) (7)

0 =
∑

i

xiyi −b0

∑

i

xi −
∑

i

b1x2
i (8)

b1

∑

i

x2
i =

∑

i

xiyi −b0

∑

i

xi (9)

(10)

Move last term to RHS
INFO-2301: Quantitative Reasoning 2 | Paul and Boyd-Graber Linear Regression | 5 of 6



System of Equations with Two Unknowns

Solve for Intercept

b0 =ȳ −b1x̄ (6)

Solve for Slope

0 =−2
∑

i

xi(yi −b0−b1xi) (7)

0 =
∑

i

xiyi −b0

∑

i

xi −
∑

i

b1x2
i (8)

b1

∑

i

x2
i =

∑

i

xiyi −b0

∑

i

xi (9)

b1

∑

i

x2
i =

∑

i

xiyi −
��∑

i yi

N

�

−b1

�∑

i xi

N

��

∑

i

xi (10)

(11)INFO-2301: Quantitative Reasoning 2 | Paul and Boyd-Graber Linear Regression | 5 of 6



Solve for Slope (continued)

b1

∑

i

x2
i =

∑

i

xiyi −
��∑

i yi

N

�

−b1

�∑

i xi

N

��

∑

i

xi
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Solve for Slope (continued)

b1

∑

i

x2
i =

∑

i

xiyi −
��∑

i yi

N

�

−b1

�∑

i xi

N

��

∑

i

xi

b1

∑

i

x2
i =

∑

i

xiyi −
�∑

i yi
∑

i xi

N

�

−b1

�

(
∑

i xi)
2

N

�

Multiplying out the last term
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Solve for Slope (continued)

b1

∑

i

x2
i =

∑

i

xiyi −
��∑

i yi

N

�

−b1

�∑

i xi

N

��

∑

i

xi

b1

∑

i

x2
i =

∑

i

xiyi −
�∑

i yi
∑

i xi

N

�

−b1

�

(
∑

i xi)
2

N

�

b1

∑

i

x2
i + b1

�

(
∑

i xi)
2

N

�

=
∑

i

xiyi −
�∑

i yi
∑

i xi

N

�

Move last term to LHS
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Solve for Slope (continued)

b1

∑

i

x2
i =

∑

i

xiyi −
��∑

i yi

N

�

−b1

�∑

i xi

N

��

∑

i

xi

b1

∑

i

x2
i =

∑

i

xiyi −
�∑

i yi
∑

i xi

N

�

−b1

�

(
∑

i xi)
2

N

�

b1

∑

i

x2
i + b1

�

(
∑

i xi)
2

N

�

=
∑

i

xiyi −
�∑

i yi
∑

i xi

N

�

b1

�

∑

i

x2
i +

�

(
∑

i xi)
2

N

�

�

=
∑

i

xiyi −
�∑

i yi
∑

i xi

N

�

Factor out b1
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Solve for Slope (continued)
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Solve for Slope (continued)

b1 =

∑

i xiyi −
�∑

i yi
∑

i xi
N

�

∑

i x
2
i +

�

(
∑

i xi)2

N

�

Ratio of the sum of the crossproducts of x and y over the sum of squares
for x
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Linear Regression
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Correlation Coefficient

True Correlation

ρ=
µXY −µXµY

σXσY
(1)

Sample Correlation

r =
x̄y − (x̄)(ȳ)
Æ

x2− (x̄)2
Æ

y2− (ȳ)2
(2)

• If x and y are independent, then correlation is 0.

• Great if ρ=±1

• Can we test how good the regression is?
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Statistical Test for Regression

• Null hypothesis H0 :ρ= 0

• Test statistic

T =
r
p

n−2
p

1− r2
(3)

• Follows a t-distribution with n−2 degress of freedom (estimating two
parameters)

• Can do either two-tailed or one-tailed test
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Wrapup

• Regression: powerful tool for explaining data

• Allows you to tell stories

• Allows you to predict the future

• Foundation for more complicated models

INFO-2301: Quantitative Reasoning 2 | Paul and Boyd-Graber Linear Regression | 4 of 4


