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Why MLE?

• Before: Distribution + Parameter→ x

• Now: x + Distribution→ Parameter

• (Much more realistic)

• But: Says nothing about how good a fit a distribution is
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Likelihood

• Likelihood is p(x;θ )

• We want estimate of θ that best explains data we seen

• I.e., Maximum Likelihood Estimate (MLE)
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Likelihood

• The likelihood function refers to the PMF (discrete) or PDF (continuous).

• For discrete distributions, the likelihood of x is P(X = x).

• For continuous distributions, the likelihood of x is the density f (x).

• We will often refer to likelihood rather than probability/mass/density so
that the term applies to either scenario.
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Optimizing Unconstrained Functions

Suppose we wanted to optimize

`= x2−2x +2 (1)
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Optimizing Unconstrained Functions

∂ `

∂ x
=0 (3)

−2x −2=0 (4)

x =−1 (5)

(Should also check that second derivative is negative)
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Optimizing Constrained Functions

Theorem: Lagrange Multiplier Method

Given functions f (x1, . . .xn) and g(x1, . . .xn), the critical points of f
restricted to the set g = 0 are solutions to equations:

∂ f

∂ xi
(x1, . . .xn) =λ

∂ g

∂ xi
(x1, . . .xn) ∀i

g(x1, . . .xn) = 0

This is n+1 equations in the n+1 variables x1, . . .xn,λ.
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Lagrange Example

Maximize `(x ,y) =
p

xy subject to the constraint 20x +10y = 200.

• Compute derivatives

∂ `

∂ x
=

1

2
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∂ g

∂ x
= 20

∂ `

∂ y
=

1

2

√

√x

y

∂ g

∂ y
= 10

• Create new systems of equations

1

2

s

y

x
= 20λ

1

2

√

√x

y
= 10λ

20x +10y = 200
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Lagrange Example

• Dividing the first equation by the second gives us

y

x
= 2 (6)

• which means y = 2x , plugging this into the constraint equation gives:

20x +10(2x) = 200

x = 5⇒ y = 10
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Continuous Distribution: Gaussian

• Recall the density function

f (x) =
1

p
2πσ2

exp

�

−
(x −µ)2

2σ2

�

(1)

• Taking the log makes math easier, doesn’t change answer (monotonic)

• If we observe x1 . . .xN , then log likelihood is

`(µ,σ)≡ −N logσ−
N

2
log(2π)−

1

2σ2

∑

i

(xi −µ)
2 (2)
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MLE of Gaussian µ

`(µ,σ) =−N logσ−
N

2
log(2π)−

1

2σ2

∑

i

(xi −µ)
2 (3)

∂ `

∂ µ
=0+

1

σ2

∑

i

(xi −µ) (4)
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MLE of Gaussian σ

`(µ,σ) =−N logσ−
N

2
log(2π)−

1

2σ2

∑

i

(xi −µ)
2 (8)

∂ `

∂ σ
=−

N

σ
+0+

1

σ3

∑

i

(xi −µ)2 (9)
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Optimizing Constrained Functions

Theorem: Lagrange Multiplier Method

Given functions f (x1, . . .xn) and g(x1, . . .xn), the critical points of f
restricted to the set g = 0 are solutions to equations:

∂ f

∂ xi
(x1, . . .xn) =λ

∂ g

∂ xi
(x1, . . .xn) ∀i

g(x1, . . .xn) = 0

This is n+1 equations in the n+1 variables x1, . . .xn,λ.
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Lagrange Example

Maximize `(x ,y) =
p

xy subject to the constraint 20x +10y = 200.

• Compute derivatives

∂ `

∂ x
=

1

2

s

y

x

∂ g

∂ x
= 20

∂ `

∂ y
=

1

2

√

√x

y

∂ g

∂ y
= 10

• Create new systems of equations

1

2

s

y

x
= 20λ

1

2

√

√x

y
= 10λ

20x +10y = 200
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Lagrange Example

• Dividing the first equation by the second gives us

y

x
= 2 (1)

• which means y = 2x , plugging this into the constraint equation gives:

20x +10(2x) = 200

x = 5⇒ y = 10
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Discrete Distribution: Multinomial

• Recall the mass function (N is total number of observations, xi is the
number for each cell, θi probability of cell)

p(~x | ~θ ) =
N!
∏

i xi !

∏

θ xi
i (2)

• Taking the log makes math easier, doesn’t change answer (monotonic)

• If we observe x1 . . .xN , then log likelihood is

`( ~θ )≡ log(n!)−
∑

i

log(xi !)+
∑

i

xi logθi (3)
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MLE of Multinomial θ

`( ~θ ) = log(N!)−
∑

i

log(xi !)+
∑

i

xi logθi +λ

�

1−
∑

i

θi

�

(4)

(5)
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�
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�
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Where did this come from? Constraint that ~θ must be a distribution.
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• ∂ `
∂ θi

= xi
θi
−λ

• ∂ `
∂ λ = 1−
∑

i θi
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MLE of Multinomial θ

• We have system of equations

θ1 =
x1

λ
(6)

...
... (7)

θK =
xK

λ
(8)

∑

i

θi =1 (9)

• So let’s substitute the first K equations into the last:
∑

i

xi

λ
= 1 (10)

• So λ=
∑

i xi =N, and θi =
xi
N
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Big Pictures

• Ran through several common examples

• For existing distributions you can (and should) look up MLE

• For new models, you can’t (foreshadowing of later in class)

◦ Classification models
◦ Unsupervised models (Expectation-Maximization)

• Not always so easy
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Classification

• Classification can be viewed as
p(y |x ,θ )

• Have x ,y , need θ

• Discovering θ is also problem of
MLE
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Clustering

• Clustering can be viewed as
p(x |z,θ )

• Have x , need z,θ

• z is guessed at iteratively
(Expectation)

• θ estimated to maximize
likelihood (Maximization)
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Not always so easy: Bias

• An estimator is biased if E
�

θ̂
�

6= θ
• We won’t prove it, but the estimate for variance is biased

• Comes from estimating µ, so need to “shrink” variance

σ̂2 =
1

N −1

∑

i

(xi −µ)
2 (1)
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Not always so easy: Intractable Likelihoods

• Not always possible to “solve for” optimal estimator

• Use gradient optimization (we’ll see this for logistic regression)

• Use other approximations (e.g., Monte Carlo sampling)

• Whole subfield of statistics / information science
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