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Why MLE?

Before: Distribution + Parameter — x

Now: x + Distribution — Parameter

(Much more realistic)

But: Says nothing about how good a fit a distribution is
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Likelihood

e Likelihood is p(x; 8)
e We want estimate of 8 that best explains data we seen
¢ |.e., Maximum Likelihood Estimate (MLE)
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Likelihood

The likelihood function refers to the PMF (discrete) or PDF (continuous).

For discrete distributions, the likelihood of x is P(X = x).

e For continuous distributions, the likelihood of x is the density f(x).

We will often refer to likelihood rather than probability/mass/density so
that the term applies to either scenario.
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Optimizing Unconstrained Functions

Suppose we wanted to optimize
{=x?—2x42 1)
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Optimizing Unconstrained Functions
Suppose we wanted to optimize

{=x*—2x+2 (1) Sy X2 )
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Optimizing Unconstrained Functions

%—O 3

ox ®)
—2x—2=0 (4)
x=—1 (5)

(Should also check that second derivative is negative)
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Optimizing Constrained Functions

Theorem: Lagrange Multiplier Method

Given functions f(xy,...x,) and g(xy,...x,), the critical points of f
restricted to the set g = 0 are solutions to equations:

of ag
3—)(/()(1, Xn) _’la_x,-(x“ Xp) Vi
9(xy,...x,) =0

This is n+ 1 equations in the n+ 1 variables xi,...X,, A.
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Lagrange Example

Maximize £(x, y) = /Xy subject to the constraint 20x + 10y = 200.
e Compute derivatives
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Lagrange Example

Maximize £(x, y) = /Xy subject to the constraint 20x + 10y = 200.
e Compute derivatives

ot 1 [y dg
— = /= = =2
ox 2V x 0Ox 0
al 1 0

LY _g:1o

oy 2\y ay
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Lagrange Example

Maximize £(x, y) = /Xy subject to the constraint 20x + 10y = 200.
e Compute derivatives
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¢ Create new systems of equations
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Lagrange Example

Maximize £(x, y) = /Xy subject to the constraint 20x + 10y = 200.
e Compute derivatives

ot 1 [y dg
— = /= = =2
ox 2V x 0Ox 0
al 1 0

LI It _g:1o

oy 2\y ay

1
=2
2V x

1
_\P:m
2\y

20x 4+ 10y = 200

¢ Create new systems of equations
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Lagrange Example

¢ Dividing the first equation by the second gives us

Z=2 (6)
X

e which means y = 2x, plugging this into the constraint equation gives:

20x+10(2x):200
x=5=>y=10
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Continuous Distribution: Gaussian

¢ Recall the density function

1 _ 2
f(x) = — exp(—(xza'l:) ) (1)

¢ Taking the log makes math easier, doesn’t change answer (monotonic)

¢ If we observe x; ... Xy, then log likelihood is
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Continuous Distribution: Gaussian

¢ Recall the density function

1 _ 2
f(x)= — exp(—(xza'l:) ) (1)

¢ Taking the log makes math easier, doesn’t change answer (monotonic)
¢ If we observe x; ... Xy, then log likelihood is

N 1
(o )__Moga__|og(2n)_2_22(x,_u)2 (2)
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Continuous Distribution: Gaussian

¢ Recall the density function

1 _ 2
f(x)= — exp(—(xza'l:) ) (1)

¢ Taking the log makes math easier, doesn’t change answer (monotonic)
¢ If we observe x; ... Xy, then log likelihood is

N 1
{(u,0)= —Nloga—2Iog(2n)—ﬁZ(Xi—u)2 2)
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Continuous Distribution: Gaussian

¢ Recall the density function

1 . 2
f(x)= zﬂa_zexp(—(xz(;:)) (1)

¢ Taking the log makes math easier, doesn’t change answer (monotonic)
¢ If we observe x; ... Xy, then log likelihood is

N 1
(o )——Nloga——log(zn)—;zZ(x,-—u)Z (2)
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MLE of Gaussian u

N 1
{(p,0) ==Nlogo — log(2m) = >— > (x—p)’ (3)
%_0 L ( — ) 4

ative Reasoning2 |  Paul and Boyd-Graber Maximum Likelihood Estimation | 3of4



MLE of Gaussian u

N 1
f(u,a)=—Nlogcr—5Iog(Zﬂ')—ﬁZ(X/—u)2 (3)
%_0 L (._ ) 4
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MLE of Gaussian u

N 1
f(u,a)=—Nloga—5log(2ﬂ')—wzZ(X,-—M)2 (3)

ot 1
3 =0t 52 20k )
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MLE of Gaussian u

N 1
{(u,0)==Niogo ——log(2m) — 5 — > (x—u)° (3)
& ot LS (i) @
u 0oz Xi—
Solve for u:
;
:E (X,—,LL) (5)
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MLE of Gaussian u

N 1
((p,0) ==Nlogo — log(2m) = >— > (x—p)’ (3)
LI o 4
ou_ +02i(X/‘ ) (4)

Solve for u:
1
0:; / (xi—u) (5)
O:Zx,—Nu (6)
X

b== 7)

Consistent with what we said before
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MLE of Gaussian o

N
E(,u,(f):—Nloga—Elog(Zﬂ:)—EZ:(X,—M)2 (8)

o N 1 .
%——;+0+;Z(Xf—u) (9)
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MLE of Gaussian o

N
E(,u,(f):—Nlogcr—zlog(277:)—EZ:(X,—M)2 (8)

o0 N 1 .
%—_U+O+;Z(XI_H) (9)
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MLE of Gaussian o

N 1
f(‘u,O'):—N|OgO'—E|09(27‘C)—EZ(X,'—,U)2 (8)

o N 1 .
%—_;+O+;Z(XI_H) (9)
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MLE of Gaussian o

N
E(,u,(f):—Nloga—zlog(277:)—EZ(X,—,LL)2 (8)

ot N | ;
%__5+0+(71”Z(X’_H) (9)
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MLE of Gaussian o

1 2
f(u,a)——Nlogcr—Elog(Zﬂ)—;ﬂZ()ﬁ—u) (8)
ol N 1
S5 =5 0t 2 (i—w)’ (9)
oo o U3Z
Solve for o:
n 1
0=——+— D (i—n) (10)
N
—=—> (x—u)? (11)
o 031.
L 2
UZ_ZI(XI ) (12)
N
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MLE of Gaussian o

N 1
f(u,a)=—Nloga—5log@ﬂ)-gZ(x/—u)z (8)
i
al N 1
%Z—;+0+;Z(Xf—u)2 ©)
Solve for o:
n 1
0=——+— D (i—n) (10)
N 1
pi (x—u)? (11)
i
L 2
02_2/'()‘;\/ w) (12)

Consistent with what we said before
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Optimizing Constrained Functions

Theorem: Lagrange Multiplier Method

Given functions f(xy,...x,) and g(xy,...x,), the critical points of f
restricted to the set g = 0 are solutions to equations:

of ag
3—)(/()(1, Xn) _’la_x,-(x“ Xp) Vi
9(xy,...x,) =0

This is n+ 1 equations in the n+ 1 variables xi,...X,, A.
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Lagrange Example

Maximize £(x, y) = /Xy subject to the constraint 20x + 10y = 200.
e Compute derivatives
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Lagrange Example

¢ Dividing the first equation by the second gives us

Z=2 (1)
X

e which means y = 2x, plugging this into the constraint equation gives:

20x+10(2x):200
x=5=>y=10
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Discrete Distribution: Multinomial

¢ Recall the mass function (N is total number of observations, x; is the
number for each cell, 6; probability of cell)

LN .

¢ Taking the log makes math easier, doesn’t change answer (monotonic)

¢ If we observe x; ... Xy, then log likelihood is

Maximum Likelihood Estimation | 5o0f8
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Discrete Distribution: Multinomial

¢ Recall the mass function (N is total number of observations, x; is the
number for each cell, 6; probability of cell)

LN .

¢ Taking the log makes math easier, doesn’t change answer (monotonic)
¢ If we observe x; ... Xy, then log likelihood is

@(5 log(n!) Zlog x;! —|—Zx, log 6 (3)

INFO-2301: Quantitative Reasoning2 | Paul and Boyd-Graber Maximum Likelihood Estimation | 50f8



Discrete Distribution: Multinomial

¢ Recall the mass function (N is total number of observations, x; is the
number for each cell, 6; probability of cell)

LN .

¢ Taking the log makes math easier, doesn’t change answer (monotonic)
¢ If we observe x; ... Xy, then log likelihood is

@(5 log(n!) Zlog x;! +Zx,logt9 (3)
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Discrete Distribution: Multinomial

¢ Recall the mass function (N is total number of observations, x; is the
number for each cell, 6; probability of cell)

LN .

¢ Taking the log makes math easier, doesn’t change answer (monotonic)
¢ If we observe x; ... Xy, then log likelihood is

@(5 log(n!) Zlog (x;) +Zx,logt9 (3)
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Discrete Distribution: Multinomial

¢ Recall the mass function (N is total number of observations, x; is the
number for each cell, 6; probability of cell)

LN )

¢ Taking the log makes math easier, doesn’t change answer (monotonic)
¢ If we observe x; ... Xy, then log likelihood is

8(5 log(n!) Zlog x;! +leogH (3)
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MLE of Multinomial 6

((6) =log(N1)—> log(xi!) + > _x;log 9,-—|—7L(1 > 9,-) (4)
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MLE of Multinomial 6

() :Iog(N!)—ZIog(X,-!) + Zx,- log 9,-+/1(1 —Z 9,-) 4)

Where did this come from? Constraint that 5 must be a distribution.
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MLE of Multinomial 6

@(5)—Iog(N!)—Zlog(x,!)—i—Zx,log@,+7t(1—29,-) (4)

Maximum Likelihood Estimation | 60f8
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MLE of Multinomial 6

@(5)—Iog(N!)—Zlog(x,!)—i—Zx,log@,+7t(1—29,-) (4)
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MLE of Multinomial 6

Maximum Likelihood Estimation | 60f8
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MLE of Multinomial 6
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MLE of Multinomial 6

¢ We have system of equations
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MLE of Multinomial 6

¢ We have system of equations

X1
0, =— 6
iy (6)
: 7)
XK
O =— 8
K= (8)
D 6=t (9)
i
e So let’s substitute the first K equations into the last:
X (10)
i A
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MLE of Multinomial 6

¢ We have system of equations

X1
0, =— 6
iy (6)
: 7)
XK
O =— 8
K= (8)
D 6=t (9)
i
e So let’s substitute the first K equations into the last:
X (10)
i A

b SOA‘:Z,'XI':N7
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MLE of Multinomial 6

¢ We have system of equations

X1
0, =— 6
iy (6)
: 7)
XK
O =— 8
K= (8)
D 6=t (9)
i
e So let’s substitute the first K equations into the last:
X (10)
i A

*SoA=>,x=N,and ;=%
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Big Pictures

¢ Ran through several common examples
¢ For existing distributions you can (and should) look up MLE
e For new models, you can't (foreshadowing of later in class)

ive Reasoning2 | Paul and Boyd-Graber



Big Pictures

¢ Ran through several common examples
¢ For existing distributions you can (and should) look up MLE
e For new models, you can't (foreshadowing of later in class)

o Classification models
o Unsupervised models (Expectation-Maximization)

* Not always so easy
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Classification

% DD n‘”g
o \‘\\\ - D%Dgcngj? o
N oo oo © ¢ Classification can be viewed as
EEEE I Py 1%, 6)

e Have x, y, need 0

-2
o

8
UD
LT

T 4 & o % * Discovering @ is also problem of
' MLE
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Clustering

Clustering can be viewed as
p(x1z,6)
* Have x, need z,0

® zis guessed at iteratively
(Expectation)

0 estimated to maximize
likelihood (Maximization)
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Not always so easy: Bias

* An estimator is biased if E[0] # 0

* We won't prove it, but the estimate for variance is biased

e Comes from estimating u, so need to “shrink” variance
A2 1

Pl "
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Not always so easy: Intractable Likelihoods

Not always possible to “solve for” optimal estimator

Use gradient optimization (we’ll see this for logistic regression)

Use other approximations (e.g., Monte Carlo sampling)

Whole subfield of statistics / information science
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