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Refresher: Random variables

• Random variables take on values in a sample space.

• This week we will focus on discrete random variables:

◦ Coin flip: {H,T }
◦ Number of times a coin lands heads after N flips: {0,1,2, . . . ,N}
◦ Number of words in a document: Positive integers {1,2, . . .}

• Reminder: we denote the random variable with a capital letter; denote a
outcome with a lower case letter.

◦ E.g., X is a coin flip, x is the value (H or T ) of that coin flip.
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Refresher: Discrete distributions

• A discrete distribution assigns a probability
to every possible outcome in the sample space

• For example, if X is a coin flip, then

P(X =H) = 0.5

P(X = T ) = 0.5

• Probabilities have to be greater than or equal to 0 and probabilities over
the entire sample space must sum to one

∑

x

P(X = x) = 1
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Mathematical Conventions

0!

If n! = n · (n−1)! then 0! = 1 if
definition holds for n> 0.

n0

Example for 3:

32 =9 (1)

31 =3 (2)

3−1 =
1

3
(3)
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Today: Types of discrete distributions

• There are many different types of discrete distributions, with different
definitions.

• Today we’ll look at the most common discrete distributions.

◦ And we’ll introduce the concept of parameters.

• These discrete distributions (along with the continuous distributions
next) are fundamental
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Bernoulli distribution

• A distribution over a sample space with two values: {0,1}
◦ Interpretation: 1 is “success”; 0 is “failure”
◦ Example: coin flip (we let 1 be “heads” and 0 be “tails”)

• A Bernoulli distribution can be defined with a table of the two
probabilities:

◦ X denotes the outcome of a coin flip:

P(X = 0) = 0.5

P(X = 1) = 0.5

◦ X denotes whether or not a TV is defective:

P(X = 0) = 0.995

P(X = 1) = 0.005
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Bernoulli distribution

• Do we need to write out both probabilities?

P(X = 0) = 0.995

P(X = 1) = 0.005

• What if I only told you P(X = 1)? Or P(X = 0)?

P(X = 0) = 1−P(X = 1)

P(X = 1) = 1−P(X = 0)

• We only need one probability to define a Bernoulli distribution

◦ Usually the probability of success, P(X = 1).
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Bernoulli distribution

Another way of writing the Bernoulli distribution:

• Let θ denote the probability of success (0≤ θ ≤ 1).

P(X = 0) = 1−θ
P(X = 1) = θ

• An even more compact way to write this:

P(X = x) = θ x(1−θ )1−x

◦ This is called a probability mass function.
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Probability mass functions

• A probability mass function (PMF) is a function that assigns a probability
to every outcome of a discrete random variable X .

◦ Notation: f (x) = P(X = x)

• Compact definition

• Example: PMF for Bernoulli random variable X ∈ {0,1}

f (x) = θ x(1−θ )1−x

• In this example, θ is called a parameter.
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Parameters

• Define the probability mass function

• Free parameters not constrained by the PMF.

• For example, the Bernoulli PMF could be written with two parameters:

f (x) = θ x
1 θ

1−x
2

But θ2 ≡ 1−θ1 . . . only 1 free parameter.

• The complexity ≈ number of free parameters. Simpler models have
fewer parameters.
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Sampling from a Bernoulli distribution

• How to randomly generate a value distributed according to a Bernoulli
distribution?

• Algorithm:

1 Randomly generate a number between 0 and 1
r = random(0, 1)

2 If r <θ , return success
Else, return failure
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Binomial distribution

• Bernoulli: distribution over two values (success or failure) from a single
event

• binomial: number of successes from multiple Bernoulli events

• Examples:

◦ The number of times “heads” comes up after flipping a coin 10 times
◦ The number of defective TVs in a line of 10,000 TVs

• Important: each Bernoulli event is assumed to be independent

• Notation: let X be a random variable that describes the number of
successes out of N trials.

◦ The possible values of X are integers from 0 to N: {0,1,2, . . . ,N}
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Binomial distribution

• Suppose we flip a coin 3 times. There are 8 possible outcomes:

P(HHH) = P(H)P(H)P(H) = 0.125

P(HHT ) = P(H)P(H)P(T ) = 0.125

P(HTH) = P(H)P(T )P(H) = 0.125

P(HTT ) = P(H)P(T )P(T ) = 0.125

P(THH) = P(T )P(H)P(H) = 0.125

P(THT ) = P(T )P(H)P(T ) = 0.125

P(TTH) = P(T )P(T )P(H) = 0.125

P(TTT ) = P(T )P(T )P(T ) = 0.125

• What is the probability of landing heads x times during these 3 flips?
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Binomial distribution

• What is the probability of landing heads x times during these 3 flips?

• 0 times:

◦ P(TTT ) = 0.125

• 1 time:

◦ P(HTT )+P(THT )+P(TTH) = 0.375

• 2 times:

◦ P(HHT )+P(HTH)+P(THH) = 0.375

• 3 times:

◦ P(HHH) = 0.125
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Binomial distribution

• The probability mass function for the binomial distribution is:

f (x) =

�

N

x

�

︸︷︷︸

“N choose x”

θ x(1−θ )N−x

• Like the Bernoulli, the binomial parameter θ is the probability of success
from one event.

• Binomial has second parameter N: number of trials.

• The PMF important: difficult to figure out the entire distribution by hand.
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Aside: Binomial coefficients

• The expression (n
k) is called a

binomial coefficient.

◦ Also called a combination in
combinatorics.

• (n
k) is the number of ways to choose k

elements from a set of n elements.

• For example, the number of ways to
choose 2 heads from 3 coin flips:
HHT, HTH, THH
(3

2) = 3

• Formula: �

n

k

�

=
n!

k!(n− k)!

Pascal’s triangle depicts the
values of (n

k).
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Bernoulli vs Binomial

• A Bernoulli distribution is a special case of the binomial distribution
when N = 1.

• For this reason, sometimes the term binomial is used to refer to a
Bernoulli random variable.
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Example

• Probability that a coin lands heads at least once during 3 flips?
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Example

• Probability that a coin lands heads at least once during 3 flips?

P(X ≥ 1) = P(X = 1)+P(X = 2)+P(X = 3)

= 0.375+0.375+0.125= 0.875
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Categorical distribution

• Recall: the Bernoulli distribution is a distribution over two values
(success or failure)

• categorical distribution generalizes Bernoulli distribution over any
number of values

◦ Rolling a die
◦ Selecting a card from a deck

• AKA discrete distribution.

◦ Most general type of discrete distribution
◦ specify all (but one) of the probabilities in the distribution
◦ rather than the probabilities being determined by the probability

mass function.
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Categorical distribution

• If the categorical distribution is over K possible outcomes, then the
distribution has K parameters.

• We will denote the parameters with a K -dimensional vector ~θ .

• The probability mass function can be written as:

f (x) =
K
∏

k=1

θ
[x=k]
k

where the expression [x = k ] evaluates to 1 if the statement is true and
0 otherwise.

◦ All this really says is that the probability of outcome x is equal to θx .

• The number of free parameters is K −1, since if you know K −1 of the
parameters, the K th parameter is constrained to sum to 1.
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Categorical distribution

• Example: the roll of a (unweighted) die

P(X = 1) = 1
6

P(X = 2) = 1
6

P(X = 3) = 1
6

P(X = 4) = 1
6

P(X = 5) = 1
6

P(X = 6) = 1
6

• If all outcomes have equal probability, this is called the uniform
distribution.

• General notation: P(X = x) = θx
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Sampling from a categorical distribution

• How to randomly select a value distributed according to a categorical
distribution?

• The idea is similar to randomly selected a Bernoulli-distributed value.

• Algorithm:

1 Randomly generate a number between 0 and 1
r = random(0, 1)

2 For k = 1, . . . ,K :

• Return smallest r s.t. r <
∑k

i=1θk
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Sampling from a categorical distribution

• Example: simulating the roll of a die

P(X = 1) = θ1 = 0.166667

P(X = 2) = θ2 = 0.166667

P(X = 3) = θ3 = 0.166667

P(X = 4) = θ4 = 0.166667

P(X = 5) = θ5 = 0.166667

P(X = 6) = θ6 = 0.166667

Random number in (0,1):
r = 0.452383

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?

• Return X = 3
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Sampling from a categorical distribution

• Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

• Return X = 6

• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome
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• We will always return X = 6 unless our random number r < 0.05.

◦ 6 is the most probable outcome
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Multinomial distribution

• Recall: the binomial distribution is the number of successes from
multiple Bernoulli success/fail events

• The multinomial distribution is the number of different outcomes from
multiple categorical events

◦ It is a generalization of the binomial distribution to more than two
possible outcomes

◦ As with the binomial distribution, each categorical event is assumed
to be independent

◦ Bernoulli : binomial :: categorical : multinomial

• Examples:

◦ The number of times each face of a die turned up after 50 rolls
◦ The number of times each suit is drawn from a deck of cards after 10

draws
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Multinomial distribution

• Notation: let ~X be a vector of length K , where Xk is a random variable
that describes the number of times that the k th value was the outcome
out of N categorical trials.

◦ The possible values of each Xk are integers from 0 to N
◦ All Xk values must sum to N:

∑K
k=1 Xk =N

• Example: if we roll a die 10 times, suppose it
comes up with the following values:

~X =< 1,0,3,2,1,3>

X1 = 1
X2 = 0
X3 = 3
X4 = 2
X5 = 1
X6 = 3

• The multinomial distribution is a joint distribution over multiple random
variables: P(X1,X2, . . . ,XK )
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Multinomial distribution

• Suppose we roll a die 3 times. There are 216 (63) possible outcomes:

P(111) = P(1)P(1)P(1) = 0.00463

P(112) = P(1)P(1)P(2) = 0.00463

P(113) = P(1)P(1)P(3) = 0.00463

P(114) = P(1)P(1)P(4) = 0.00463

P(115) = P(1)P(1)P(5) = 0.00463

P(116) = P(1)P(1)P(6) = 0.00463

. . . . . . . . .

P(665) = P(6)P(6)P(5) = 0.00463

P(666) = P(6)P(6)P(6) = 0.00463

• What is the probability of a particular vector of counts after 3 rolls?
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Multinomial distribution

• What is the probability of a particular vector of counts after 3 rolls?

• Example 1: ~X =< 0,1,0,0,2,0>

◦ P(~X) = P(255)+P(525)+P(552) = 0.01389

• Example 2: ~X =< 0,0,1,1,1,0>

◦ P(~X) = P(345)+P(354)+P(435)+P(453)+P(534)+P(543) =
0.02778
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Multinomial distribution

• The probability mass function for the multinomial distribution is:

f (~x) =
N!
∏K

k=1 xk !
︸ ︷︷ ︸

Generalization of
binomial coefficient

K
∏

k=1

θ xk
k

• Like categorical distribution, multinomial has a K -length parameter
vector ~θ encoding the probability of each outcome.

• Like binomial, the multinomial distribution has a additional parameter N,
which is the number of events.
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Multinomial distribution: summary

• Categorical distribution is multinomial when N = 1.

• Sampling from a multinomial: same code repeated N times.

◦ Remember that each categorical trial is independent.
◦ Question: Does this mean the count values (i.e., each X1, X2, etc.)

are independent?

• No! If N = 3 and X1 = 2, then X2 can be no larger than 1 (must
sum to N).

• Remember this analogy:

◦ Bernoulli : binomial :: categorical : multinomial
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