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Refresher: Random variables

¢ Random variables take on values in a sample space.
e This week we will focus on discrete random variables:
o Coin flip: {H, T}
o Number of times a coin lands heads after N flips: {0,1,2,..., N}
o Number of words in a document: Positive integers {1,2,...}
* Reminder: we denote the random variable with a capital letter; denote a
outcome with a lower case letter.
o E.g., Xis a coin flip, x is the value (H or T) of that coin flip.
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Refresher: Discrete distributions

¢ A discrete distribution assigns a probability
to every possible outcome in the sample space

e For example, if X is a coin flip, then

P(X=H) = 05
P(X=T) = 05

* Probabilities have to be greater than or equal to 0 and probabilities over
the entire sample space must sum to one

D P(X=x)=1
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Mathematical Conventions

0!

If n'=n-(n—1)!then 0! =1 if
definition holds for n> 0.

n°

Example for 3:

= (1)

3'= )

g1 =] (3)
3
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Today: Types of discrete distributions

e There are many different types of discrete distributions, with different
definitions.

e Today we’'ll look at the most common discrete distributions.
o And we’ll introduce the concept of parameters.

¢ These discrete distributions (along with the continuous distributions
next) are fundamental
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Bernoulli distribution

A distribution over a sample space with two values: {0,1}

o Interpretation: 1 is “success”; 0 is “failure”
o Example: coin flip (we let 1 be “heads” and 0 be “tails”)

e A Bernoulli distribution can be defined with a table of the two

probabilities:

o X denotes the outcome of a coin flip:
P(X=0) = 05
P(X=1) = 05

o X denotes whether or not a TV is defective:
P(X=0) = 0.995
P(X=1) = 0.005
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Bernoulli distribution

* Do we need to write out both probabilities?

P(X=0) = 0.995
P(X=1) = 0.005

e What if | only told you P(X =1)? Or P(X =0)?
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Bernoulli distribution

* Do we need to write out both probabilities?

P(X=0) = 0.995
P(X=1) = 0.005

e What if | only told you P(X =1)? Or P(X =0)?

P(X=0) = 1—P(X=1)
P(X=1) = 1—P(X=0)

* We only need one probability to define a Bernoulli distribution
o Usually the probability of success, P(X =1).
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Bernoulli distribution

Another way of writing the Bernoulli distribution:

* Let 8 denote the probability of success (0< 0 <1).

P(X=0) = 1-0
P(X=1) = @

¢ An even more compact way to write this:

P(X=x) = 0*(1—6)"

o This is called a probability mass function.
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Probability mass functions

A probability mass function (PMF) is a function that assigns a probability
to every outcome of a discrete random variable X.

o Notation: f(x) = P(X = x)
Compact definition

Example: PMF for Bernoulli random variable X € {0, 1}

f(x)=0*(1—0)"

In this example, 0 is called a parameter.
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Parameters

Define the probability mass function
* Free parameters not constrained by the PMF.
* For example, the Bernoulli PMF could be written with two parameters:

f(x)=0;6,*

But 8, =1—0; ...only 1 free parameter.

The complexity ~ number of free parameters. Simpler models have
fewer parameters.
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Sampling from a Bernoulli distribution

* How to randomly generate a value distributed according to a Bernoulli
distribution?
e Algorithm:
© Randomly generate a number between 0 and 1
r = random(0, 1)
® If r< 0, return success
Else, return failure
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Binomial distribution

e Bernoulli: distribution over two values (success or failure) from a single
event

¢ binomial: number of successes from multiple Bernoulli events
e Examples:

o The number of times “heads” comes up after flipping a coin 10 times
o The number of defective TVs in a line of 10,000 TVs

¢ Important: each Bernoulli event is assumed to be independent

¢ Notation: let X be a random variable that describes the number of
successes out of N trials.

o The possible values of X are integers from 0 to N: {0,1,2,..., N}
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Binomial distribution

e Suppose we flip a coin 3 times. There are 8 possible outcomes:

P(HHH) = P(H)P(H)P(H) =0.125
P(HHT) =P(H)P(H)P(T) =0.125
P(HTH) =P(H)P(T)P(H) =0.125
P(HTT) =P(H)P(T)P(T) =0.125
P(THH) =P(T)P(H)P(H) =0.125
P(THT) =P(T)P(H)P(T) =0.125
P(TTH) =P(T)P(T)P(H) =0.125
P(TTT) =P(T)P(T)P(T) =0.125

e What is the probability of landing heads x times during these 3 flips?
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Binomial distribution

e What is the probability of landing heads x times during these 3 flips?
e Qtimes:
o P(TTT)=0.125
e 1time:
o P(HTT)+ P(THT)+ P(TTH) =0.375
e 2times:
o P(HHT)+ P(HTH) 4+ P(THH) = 0.375
* 3times:

o P(HHH) =0.125
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Binomial distribution

The probability mass function for the binomial distribution is:

f(x) = (N) 0*(1—0)N~

X

—~—
“N choose x”

Like the Bernoulli, the binomial parameter 6 is the probability of success
from one event.

Binomial has second parameter N: number of trials.

The PMF important: difficult to figure out the entire distribution by hand.
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Aside: Binomial coefficients

The expression (}) is called a

binomial coefficient.
o Also called a combination in 1
combinatorics. 1 1

* (}) is the number of ways to choose k 1 21
elements from a set of n elements. 13 31

e For example, the number of ways to 146 41
choose 2 heads from 3 coin flips: 1510 10 51
HHT, HTH, THH _
(3) -3 Pascal’s triangle depicts the

b) =

values of (j).

Formula: |
n\ n!
(k) ~ k!(n—k)!
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Bernoulli vs Binomial

e A Bernoulli distribution is a special case of the binomial distribution
when N=1.

¢ For this reason, sometimes the term binomial is used to refer to a
Bernoulli random variable.
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Example

¢ Probability that a coin lands heads at least once during 3 flips?
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Example

¢ Probability that a coin lands heads at least once during 3 flips?

P(X>1)
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Example

e Probability that a coin lands heads at least once during 3 flips?

P(X=1) =P(X=1)+P(X=2)+P(X=3)
=0.375+0.375+0.125 = 0.875
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Categorical distribution

¢ Recall: the Bernoulli distribution is a distribution over two values
(success or failure)
e categorical distribution generalizes Bernoulli distribution over any
number of values
o Rolling a die
o Selecting a card from a deck
* AKA discrete distribution.
o Most general type of discrete distribution
o specify all (but one) of the probabilities in the distribution
o rather than the probabilities being determined by the probability
mass function.
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Categorical distribution

e [f the categorical distribution is over K possible outcomes, then the
distribution has K parameters.

¢ We will denote the parameters with a K-dimensional vector g.

e The probability mass function can be written as:
K

) =] Jok™"

k=1
where the expression [x = k] evaluates to 1 if the statement is true and
0 otherwise.

o All this really says is that the probability of outcome x is equal to 6,.

e The number of free parameters is K—1, since if you know K —1 of the
parameters, the Kth parameter is constrained to sum to 1.
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Categorical distribution

e Example: the roll of a (unweighted) die

PX=1) =
P(x=2) =}
P(X=3) =1
P(x=1) =1
P(X=5) =3
P(X=86) =3

¢ If all outcomes have equal probability, this is called the uniform
distribution.

* General notation: P(X = x) = 0,
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Sampling from a categorical distribution

* How to randomly select a value distributed according to a categorical
distribution?
¢ The idea is similar to randomly selected a Bernoulli-distributed value.
e Algorithm:
© Randomly generate a number between 0 and 1
r = random(0, 1)
® Fork=1,...,K:

Return smallest r s.t. r <> 6

stributions: Discrete | 50f8
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Sampling from a categorical distribution

e Example: simulating the roll of a die

P(X=1) =6, =0.166667
P(X=2) =6, =0.166667
P(X=3) =6; =0.166667
P(X=4) =0, =0.166667
P(X=5) =605 =0.166667
P(X=6) =60 =0.166667
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Sampling from a categorical distribution

e Example: simulating the roll of a die
Random number in (0, 1):

P(X=1) =6, =0.166667 r=0.452383
P(X=2) =6, =0.166667
P(X=3) =60, =0.166667
P(X=4) =0, =0.166667
P(X=5) =0s =0.166667
P(X=6) =05 =0.166667
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Sampling from a categorical distribution

e Example: simulating the roll of a die
Random number in (0, 1):

P(X=1) =6, =0.166667 r=0.452383
P(X=2) =6, =0.166667 r<0,?
P(X=3) =6; =0.166667

P(X=4) =0, =0.166667

P(X=5) =0s =0.166667

P(X=6) =05 =0.166667
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Sampling from a categorical distribution

e Example: simulating the roll of a die
Random number in (0, 1):

P(X=1) =60; =0.166667 r=0.452383
P(X=2) =0, =0.166667 r<,?
P(X=3) =0; =0.166667 r<6;+0,?
P(X=4) =6, =0.166667

P(X=5) =0s =0.166667

P(X=6) =0, =0.166667
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Sampling from a categorical distribution

e Example: simulating the roll of a die
Random number in (0, 1):

P(X=1) =0, =0.166667 r=0.452383
P(X=2) =6, =0.166667 r<6,?
P(X=3) =0; =0.166667 r<6;+0,?
P(X=4) =0, =0.166667 r<6i+0;+ 6,7
P(X=5) =05 =0.166667

P(X=6) =0 =0.166667
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Sampling from a categorical distribution

e Example: simulating the roll of a die
Random number in (0, 1):

P(X=1) =60; =0.166667 r=0.452383
P(X=2) =0, =0.166667 r<,?
P(X=3) =0; =0.166667 r<6;+0,?
P(X=4) =0, =0.166667 r<6i+0;+ 6,7
P(X=5) =05 =0.166667 * Return X =3
P(X=6) =0, =0.166667
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Sampling from a categorical distribution

e Example: simulating the roll of a die

P(X=1) =6, =0.166667
P(X=2) =6, =0.166667
P(X=3) =6; =0.166667
P(X=4) =0, =0.166667
P(X=5) =605 =0.166667
P(X=6) =60 =0.166667
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Sampling from a categorical distribution

e Example: simulating the roll of a die

P(X=1) =0, =0.166667 Random number in (0, 1):
P(X=2) =6, =0.166667 r=0.117544

P(X=3) =0, =0.166667

P(X=4) =6, =0.166667

P(X=5) =05 =0.166667

P(X=6) =0; =0.166667
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Sampling from a categorical distribution

e Example: simulating the roll of a die

P(X=1) =0, =0.166667 Random number in (0, 1):
P(X=2) =0, =0.166667 r=0.117544

P(X=3) =6, =0.166667 r<6,?

P(X=4) =6, =0.166667

P(X=5) =6s =0.166667

P(X=6) =6, =0.166667
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Sampling from a categorical distribution

e Example: simulating the roll of a die

P(X=1) =0, =0.166667 Random number in (0, 1):
P(X=2) =6, =0.166667 r=0.117544

P(X=3) =6, =0.166667 r<6,?

P(X=4) =60, =0.166667 * Return X =1
P(X=5) =6s =0.166667

P(X=6) =6, =0.166667
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Sampling from a categorical distribution

e Example 2: rolling a biased die

P(X=1) =6, =0.01
P(X=2) =6, =0.01
P(X=3) =6; =0.01
P(X=4) =6, =0.01
P(X=5) =6 =0.01
P(X=6) =0s =0.95
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Sampling from a categorical distribution

Random number in (0, 1):

* Example 2: rolling a biased die r—=0.209581
P(X=1) =6; =0.01
P(X=2) =6, =0.01
P(X=3) =6, =0.01
P(X=4) =6, =0.01
P(X=5) =65 =0.01
P(X=6) =60, =095
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Sampling from a categorical distribution

Random number in (0, 1):

* Example 2: rolling a biased die r—=0.209581
P(X=1) =6, =0.01 r<6,?
P(X=2) =6, =0.01
P(X=3) =6; =0.01
P(X=4) =6, =0.01
P(X=5) =6; =0.01
P(X=6) =60; =0.95
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Sampling from a categorical distribution

Random number in (0, 1):

* Example 2: rolling a biased die r—=0.209581
P(X=1) =6, =0.01 r<6,?
P(X=2) =6, =0.01 r<6i+67
P(X=3) =6; =0.01
P(X=4) =6, =0.01
P(X=5) =6; =0.01
P(X=6) =60; =0.95
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Sampling from a categorical distribution

Random number in (0, 1):

* Example 2: rolling a biased die r—=0.209581
P(X=1) =6, =0.01 r<6,?
I)
P(X=2) =6, =0.01 r<6;+6,"
r< 91 + 92 + 03?
P(X=3) =6; =0.01
P(X=4) =6, =0.01
P(X=5) =6s =0.01
P(X=6) =0 =0.95
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Sampling from a categorical distribution

Random number in (0, 1):

* Example 2: rolling a biased die r—=0.209581
P(X=1) =6, =0.01 r<6,?
I)
P(X=2) =6, =0.01 r<6;+6,"
r< 91 + 92 + 03?
P(X:3) :93 2001 r<01+92+03+94?
P(X=4) =6, =0.01
P(X=5) =65 =0.01
P(X=6) =60, =0.95
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Sampling from a categorical distribution

Random number in (0, 1):

* Example 2: rolling a biased die r = 0.209581
P(X=1) =6, =0.01 r<o,?
I)
P(X=2) =6, =0.01 r<0;+ 06
r< 91 + 92 + 03?
P(X:3) :93 =0.01 I’<01+92+03+94?
P(X:4) :94 =0.01 f<01+92+03+94+95?
P(X=5) =6; =0.01
P(X=6) =6 =0.95

INFO-2301: Quantitative Reasoning2 | Paul and Boyd-Graber Probability Distributions: Discrete | 8of8



Sampling from a categorical distribution

Random number in (0, 1):

* Example 2: rolling a biased die r—=0.209581
P(X=1) =6, =0.01 r<6,?
0, + 60,7
P(X=2) =0, =0.01 r<oito
( ) 2 r< 91 +92+ 03?
P(X:3) :93 =0.01 I’<01+92+03+94?
P(X:4) :94 =0.01 f<01+92+03+94+95?
P(X=5) =605 =0.01 r<0i+0,+0;+0,+05+057
P(X=6) =60 =0.95
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Sampling from a categorical distribution

Random number in (0, 1):

* Example 2: rolling a biased die r = 0.209581
P(X=1) =6, =0.01 r<o,?
I)
P(X=2) =6, =0.01 r<0;+ 06
r< 91 +92+93?
P(X=3) =6; =0.01 <O+ 0+ 05+ 0,
P(X:4) :94 =0.01 f<01+92+03+94+95?
P(X=5) =6s =0.01 r<0i+0,+0;+0,+ 05+ 057
P(X:6) :96 =0.95 o Return X =6
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Sampling from a categorical distribution

Random number in (0, 1):

* Example 2: rolling a biased die r = 0.209581
P(X=1) =6, =0.01 r<o,?
I7
P(X=2) =6, =0.01 r<0;+ 06
r< 91 +92+93?
P(X=3) =6; =0.01 <O+ 0+ 05+ 0,
P(X:4) :94 =0.01 f<01+92+03+94+95?
P(X=5) =605 =0.01 r<0i+0,+0;+0,+05+057
P(X:6) :96 =0.95 o Return X =6

* We will always return X = 6 unless our random number r < 0.05.
o 6 is the most probable outcome
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Multinomial distribution

¢ Recall: the binomial distribution is the number of successes from
multiple Bernoulli success/fail events

* The multinomial distribution is the number of different outcomes from
multiple categorical events
o Itis a generalization of the binomial distribution to more than two

possible outcomes
o As with the binomial distribution, each categorical event is assumed

to be independent
o Bernoulli : binomial :: categorical : multinomial
e Examples:

o The number of times each face of a die turned up after 50 rolls
o The number of times each suit is drawn from a deck of cards after 10

draws

Probability Distributions: Discrete | 2of7
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Multinomial distribution

* Notation: let X be a vector of length K, where X is a random variable
that describes the number of times that the kth value was the outcome
out of N categorical trials.

o The possible values of each X, are integers from 0 to N
o All X, values must sum to N: 22(:1 Xe=N

e Example: if we roll a die 10 times, suppose it Xy =1
comes up with the following values: Xo =0
X;=3

X=<1,0,3,2,1,3> X, =2
X5 =1

XG — 3

* The multinomial distribution is a joint distribution over multiple random
variables: P(Xq, Xz, ..., Xk)

INFO-2301: Quantitative Reasoning2 | Paul and Boyd-Graber
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Multinomial distribution

* Suppose we roll a die 3 times. There are 216 (6°) possible outcomes:

P(111) =P(1)P(1)P(1) =0.00463
P(112) =P(1)P(1)P(2) =0.00463
P(113) =P(1)P(1)P(3) =0.00463
P(114) =P(1)P(1)P(4) =0.00463
P(115) =P(1)P(1)P(5) =0.00463
P(116) =P(1)P(1)P(6) =0.00463

P(66.5.) = P(6)P(6)P(5) ;0.00463
P(666) = P(6)P(6)P(6) =0.00463

e What is the probability of a particular vector of counts after 3 rolls?

INFO-2301: Quantitative Reasoning2 | Paul and Boyd-Graber stributions: Discrete | 40f7



Multinomial distribution

* What is the probability of a particular vector of counts after 3 rolls?
e Example 1: X =< 0,1,0,0,2,0 >
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Multinomial distribution

* What is the probability of a particular vector of counts after 3 rolls?
e Example 1: X =< 0,1,0,0,2,0 >
° P()?) = P(255) + P(525) + P(552) = 0.01389
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Multinomial distribution

* What is the probability of a particular vector of counts after 3 rolls?
e Example 1: X =< 0,1,0,0,2,0 >

o P()?) = P(255) + P(525) + P(552) = 0.01389
* Example 2: X =<0,0,1,1,1,0>
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Multinomial distribution

* What is the probability of a particular vector of counts after 3 rolls?
e Example 1: X =< 0,1,0,0,2,0 >
o P()?) = P(255) + P(525) + P(552) = 0.01389
* Example 2: X =<0,0,1,1,1,0>
o P(7() = P(345) + P(354) + P(435) + P(453) + P(534) + P(543) =
0.02778
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Multinomial distribution

¢ The probability mass function for the multinomial distribution is:

N! K
W)= —— []o
———

Generalization of
binomial coefficient

¢ Like categorical distribution, multinomial has a K-length parameter
vector 6 encoding the probability of each outcome.

¢ Like binomial, the multinomial distribution has a additional parameter N,
which is the number of events.
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Multinomial distribution: summary

e Categorical distribution is multinomial when N =1.
e Sampling from a multinomial: same code repeated N times.

o Remember that each categorical trial is independent.
o Question: Does this mean the count values (i.e., each Xj, X5, etc.)
are independent?
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Multinomial distribution: summary

e Categorical distribution is multinomial when N =1.
e Sampling from a multinomial: same code repeated N times.
o Remember that each categorical trial is independent.
o Question: Does this mean the count values (i.e., each Xj, X5, etc.)
are independent?
No! If N=3 and X; =2, then X, can be no larger than 1 (must
sum to N).
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Multinomial distribution: summary

e Categorical distribution is multinomial when N =1.
e Sampling from a multinomial: same code repeated N times.

o Remember that each categorical trial is independent.
o Question: Does this mean the count values (i.e., each Xj, X5, etc.)
are independent?

No! If N=3 and X; =2, then X, can be no larger than 1 (must
sum to N).

* Remember this analogy:
o Bernoulli : binomial :: categorical : multinomial
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