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By the end of today . . .

• You’ll be able to apply the concepts of distributions, independence, and
conditional probabilities

• You’ll be able to derive joint, marginal, and conditional probabilites from
each other

• You’ll be able to compute expectations and entropies
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Preface: Why make us do this?

• Probabilities are the language we use to describe data

• A reasonable (but geeky) definition of data science is how to get
probabilities we care about from data

• Later classes will be about how to do this for different probability models

• But first, we need key definitions of probability (and it makes more
sense to do it all at once)

• So pay attention!
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By the end of today . . .

• You’ll be able to apply the concepts of distributions, independence, and
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Engineering rationale behind probabilities

• Encoding uncertainty

◦ Data are variables
◦ We don’t always know the values of variables
◦ Probabilities let us reason about variables even when we are

uncertain

• Encoding confidence

◦ The flip side of uncertainty
◦ Useful for decision making: should we trust our conclusion?
◦ We can construct probabilistic models to boost our confidence

• E.g., combining polls
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Random variable

• Probability is about random variables.

• A random variable is any “probabilistic” outcome.

• Examples of variables:

◦ Yesterday’s high temperature
◦ The height of someone

• Examples of random variables:

◦ Tomorrow’s high temperature
◦ The height of someone chosen randomly from a population

• We’ll see that it’s sometimes useful to think of quantities that are not
strictly probabilistic as random variables.

◦ The high temperature on 03/04/1905
◦ The number of times “streetlight” appears in a document
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Random variable

• Random variables take on values in a sample space.

• They can be discrete or continuous:

◦ Coin flip: {H,T }
◦ Height: positive real values (0,∞)
◦ Temperature: real values (−∞,∞)
◦ Number of words in a document: Positive integers {1,2, . . .}

• We call the outcomes events.

• Denote the random variable with a capital letter; denote a realization of
the random variable with a lower case letter.

◦ E.g., X is a coin flip, x is the value (H or T ) of that coin flip.
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Discrete distribution

• A discrete distribution assigns a probability
to every event in the sample space

• For example, if X is a coin, then

P(X =H) = 0.5

P(X = T ) = 0.5

• And probabilities have to be greater than or equal to 0
• Probabilities of disjunctions are sums over part of the space. E.g., the

probability that a die is bigger than 3:

P(D > 3) = P(D = 4)+P(D = 5)+P(D = 6)

• The probabilities over the entire space must sum to one
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Events

An event is a set of outcomes to which a
probability is assigned

• drawing a black card from a deck of cards

• drawing a King of Hearts

Intersections and unions:

• Intersection: drawing a red and a King

P(A∩B) (1)

• Union: drawing a spade or a King

P(A∪B) = P(A)+P(B)−P(A∩B) (2)
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Joint distribution

• Typically, we consider collections of random variables.

• The joint distribution is a distribution over the configuration of all the
random variables in the ensemble.

• For example, imagine flipping 4 coins. The joint distribution is over the
space of all possible outcomes of the four coins.

P(HHHH) = 0.0625

P(HHHT ) = 0.0625

P(HHTH) = 0.0625

. . .

• You can think of it as a single random variable with 16 values.
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Visualizing a joint distribution

x

~x

~x, y x, ~yx, y

~x, ~y
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Marginalization

If we know a joint distribution of multiple variables, what if we want to know
the distribution of only one of the variables?

We can compute the distribution of P(X) from P(X ,Y ,Z) through
marginalization:
∑

y

∑

z

P(X ,Y = y ,Z = z) =
∑

y

∑

z

P(X)P(Y = y ,Z = z |X)

= P(X)
∑

y

∑

z

P(Y = y ,Z = z |X)

= P(X)
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We’ll explain this notation more next week for now the formula is the most
important part.
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Marginalization (from Leyton-Brown)

Joint distribution
temperature (T) and weather (W)

T=Hot T=Mild T=Cold
W=Sunny .10 .20 .10
W=Cloudy .05 .35 .20

Marginalization allows us to compute
distributions over smaller sets of
variables:

• P(X ,Y ) =
∑

z P(X ,Y ,Z = z)

• Corresponds to summing out a table
dimension

• New table still sums to 1

• Marginalize out weather

• Marginalize out temperature
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Marginalization (from Leyton-Brown)

Joint distribution
temperature (T) and weather (W)
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Independence

Random variables X and Y are independent if and only if
P(X = x ,Y = y) = P(X = x)P(Y = y).
Mathematical examples:

• If I flip a coin twice, is the second outcome independent from the first
outcome?

• If I draw two socks from my (multicolored) laundry, is the color of the first
sock independent from the color of the second sock?
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Independence

Intuitive Examples:

• Independent:

◦ you use a Mac / the Hop bus is on schedule
◦ snowfall in the Himalayas / your favorite color is blue

• Not independent:

◦ you vote for Mitt Romney / you are a Republican
◦ there is a traffic jam on 25 / the Broncos are playing
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Independence

Sometimes we make convenient assumptions.

• the values of two dice (ignoring gravity!)

• the value of the first die and the sum of the values

• whether it is raining and the number of taxi cabs

• whether it is raining and the amount of time it takes me to hail a cab

• the first two words in a sentence
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Expectation

An expectation of a random variable is a weighted average:

E[f (X)] =
∑

x

f (x)p(x) (discrete)

=

∫ ∞

−∞
f (x)p(x)dx (continuous)
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Expectation

Expectations of constants or known values:

• E[a] = a

• E[Y |Y = y ] = y

INFO-2301: Quantitative Reasoning 2 | Paul and Boyd-Graber Mathematical Foundations | 3 of 5



Expectation Intuition

• Average outcome (might not be an event: 2.4 children)

• Center of mass
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Expectation of die / dice

What is the expectation of the roll of die?

One die

1 · 1
6 +2 · 1

6 +3 · 1
6 +4 · 1

6 +5 · 1
6 +6 · 1

6 = 3.5

What is the expectation of the sum of two dice?

Two die

2· 1
36+3· 2

36+4· 3
36+5· 4

36+6· 5
36+7· 6

36+8· 5
36+9· 4

36+10· 3
36+11· 2

36+12· 1
36 = 7
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Entropy

• Measure of disorder in a system

• In the real world, entroy in a system tends
to increase

• Can also be applied to probabilities:

◦ Is one (or a few) outcomes certain (low
entropy)

◦ Are things equiprobable (high entropy)

• In data science

◦ We look for features that allow us to
reduce entropy (decision trees)

◦ All else being equal, we seek models
that have maximum entropy (Occam’s
razor)
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Aside: Logarithms

• lg(x) = b⇔ 2b = x

• Makes big numbers small

• Way to think about them: cutting a
carrot

lg(1)=0

lg(2)=1

lg(4)=2

lg(8)=3
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Entropy

Entropy is a measure of uncertainty that is associated with the distribution
of a random variable:

H(X) =−E [lg(p(X))]

=−
∑

x

p(x) lg(p(x)) (discrete)

=−
∫ ∞

−∞
p(x) lg(p(x))dx (continuous)

Does not account for the values of the random variable, only the spread of
the distribution.
• H(X)≥ 0
• uniform distribution = highest entropy, point mass = lowest
• suppose P(X = 1) = p, P(X = 0) = 1−p and

P(Y = 100) = p, P(Y = 0) = 1−p: X and Y have the same entropy
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the distribution.
• H(X)≥ 0
• uniform distribution = highest entropy, point mass = lowest
• suppose P(X = 1) = p, P(X = 0) = 1−p and

P(Y = 100) = p, P(Y = 0) = 1−p: X and Y have the same entropy
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Wrap up

• Probabilities are the language of data science

• You’ll need to manipulate probabilities and understand marginalization
and independence

• Thursday: Working through probability examples

• Next week: Conditional probabilities
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