
More than the Usual Suspects:
The Physical Self and Other Resources for

Learning to Program Using a 3D Avatar Environment
Kate Starbird
ATLAS Institute

University of Colorado at Boulder

catharine.starbird@colorado.edu

Leysia Palen
Department of Computer Science
University of Colorado at Boulder

palen@cs.colorado.edu

ABSTRACT
This paper presents results from a video-based analysis of non-
programmers’ use of a new platform for end-user programming,
the 3D Avatar Programming System (3DAPS). We use micro-
ethnographic analytic methods to understand how learning about
programming occurs. We discuss how the management of internal
and external cognitive representations of 3D movement
information leverages existing, embodied knowledge to unravel
less familiar knowledge—that of programmatic instruction. In
other words, the 3D movement serves as the language of
translation between the representations to support learning. We
also examine how shared code is used as an educational resource
in a learning environment without a teacher.

Categories and Subject Descriptors
K.3.1 Computer Uses in Education - Collaborative learning; K.3.2
Computer and Information Science Education; H.5.2 Information
Interfaces and Presentation—User Interfaces (D.2.2, H.1.2, I.3.6);
D.2.6 Programming Environments - Graphical environments.
General Terms
Design, Human Factors, Languages

Keywords
Avatars, broadening participation, computer science education,
constructionism, distributed cognition, end-user programming,
interaction analysis, online-identity, social networks.

1. INTRODUCTION
Computer science educators and education researchers have
developed a variety of end-user programming systems aimed at
teaching computer-programming skills to novices [11]. In this
paper we present results from a video-based analysis of the use of
a new platform for end-user programming, the 3D Avatar
Programming System (3DAPS), designed to include features that
would further appeal to would-be programmers—that of
programming an avatar as a personal representation of self that
could then appear in different social networking forums.

Here, we examine how a target audience uses such a system, not
as a simple matter of identifying usability problems, but rather to
formulate understandings about programming learning, with a
longer term hope of broadening participation in the computing
field. After setting up a research design that would allow for
extended engagement with the programming environment, a
detailed video analysis combined with log data analysis revealed
learning patterns that built on the ability to share code with known
and unknown others. It also unexpectedly revealed learning
behaviors that relied on embodied cognition to translate the
seemingly esoteric activities of programming into more personally
meaningful action.

1.1 Prior Work & Design Rationale
This research works from the premise of the popular end-user
programming platform, Alice—that 3D content generation can be
a motivational draw for novices to computer programming [6, 12].
The 3DAPS platform allows users, ideally novice programmers,
to control the actions of a three-dimensional Avatar.

In addition, long-standing research in end-user programming and
education holds that the sharing of personal creations supports
powerful constructionist learning experiences [5, 14, 15]. Another
existing end-user programming system, Scratch, exploits this
phenomenon in a socially-networked, Web 2.0 environment,
leveraging sharing for peer support and as motivation to
participate [16] The 3DAPS platform incorporates a dynamic
library that allows users to share, borrow, and modify action code.

1.2 Research Objectives
This research explores how 3D content and sharing can be used as
more than mere motivation for participation within end-user
programming platforms – but also as resources through which
learning occurs. Brandt et al. show how current programming
practice incorporates code-sharing [4], and investigate methods
for supporting this behavior [3]. In this paper, we show how
novice programmers, within an environment that has no “teacher,”
use borrowed code in different ways to learn computer-
programming skills.

In addition, this investigation unexpectedly uncovered how novice
programmers mapped 3D graphical representation to the actions
of their own bodies to serve as a resource for programming. Alac
reports on a similar phenomenon, showing how scientists learning
how to program a robot used their own bodies to understand,
visualize and control the movements [1]. In her work, the
connection between self and robotic representation of self, as well
as the scientists’ exploration of motion within these two different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
iConference 2011, Feb 8–11, 2011, Seattle, WA, USA.
Copyright © 2011 ACM 978-1-4503-0121-3/11/02…$10.00

forms (what Alac called body-in-interaction), was integral to the
learning process. The results of this research reveal forms of
embodied learning, and show how the connection of physical self
to a digital representation of self (a 3D Avatar), can drive learning
within an end-user programming environment.

2. PROGRAMMING ENVIRONMENT
The 3DAPS working prototype contains several key design
components to allow for focused evaluation of both current
functionality and feasibility as an educational tool. The focus of
this first major phase of research was to isolate and evaluate
conceptual building blocks of the full-fidelity system. Though
future design directions will investigate drag-and-drop and
graphical programming, the current system uses a text-based
approximation of JavaScript, intended to make programming
more user-friendly, but flexible enough to serve as an easily
modifiable research tool.

2.1 3DAPS System Design
3DAPS consists of four components: the Programming
Environment, the 3D Graphical Display Window, the Construct
Window and the Library Window (Fig. 1). The Programming
Environment is a textual window that contains code that runs a
motion script created by a user. The Graphical Display Window
contains a 3D Avatar, currently composed of simple shapes.
Scripts created in the programming window animate the Avatar in
real time. The Construct Window provides textual examples of
different programming constructs (loops, conditional statements,
etc.) that users can use for reference, or copy/paste into their
programming window. The Library Window contains the textual
code of previously created functions that have been shared with
the library. Users can download functions from the library into
their Programming Window using copy/paste and see the motions
they create using a simple function call. Users can manipulate
downloaded code in any way they wish, changing existing
functions or copying/pasting any piece of code into their own
functions. They can then share their motion and its code with the
library for other users to see and use. The <Share> button was
simulated wizard-of-oz style during the user studies.

Figure 1. 3D Avatar Programming System layout.

Buttons at bottom left say Run, Stop, Reset Me, Share.

2.2 System Specifications
The Programming Window and the Graphical Display Window
exist as a single webpage run through a web browser. The system
is implemented in JavaScript using Google’s O3D plug-in to
render the 3D graphics in real time. O3D provides graphical
support and compatibility with several 3D modeling systems that
will enable the future system to animate high-quality 3D Avatar
models. For these studies, the Construct and Library Windows

were simple text windows. In future implementations, constructs
will be drag-and-droppable and the library will feature one-click
testing and downloading.

2.3 Programming Language
The 3D Avatar programming language resembles a limited form
of JavaScript with similar syntax. At its base are three types of
Basic Movement Functions that users can call:

Move(x, y, z, time);
Rotate(x, x, y, time);
RotateLeftHip(x, y, z, time);

The Move command moves the Avatar x units along the X-axis
(left/right), y units along the Y-axis (up/down), and z units along
the Z-axis (forward/backward) in time seconds. The Rotate
command rotates the Avatar x degrees around the X-axis, y
degrees around the Y-axis, and z degrees around the Z-axis in time
seconds. The RotateJoint commands take the same arguments as
the Rotate command. As with a human body, a rotation of a joint
will rotate all of the bones and joints below that joint, as well as
their axes of rotation.
There are two movement constructs built into the Avatar
Programming Language. The DoInOrder Movement Construct
specifies a list of motions that should be executed in order, one at
a time. The DoTogether Movement Construct specifies a list of
motions that should be executed all at the same time. The latter
construct, for example, could be used to make an Avatar move
forward and swing both arms and legs at the same time in a
walking motion. Movement Constructs can be nested inside each
other and can contain other constructs and any other combination
of code. We borrowed the DoInOrder and DoTogether terms from
the functionally similar Animation Objects in the Alice
programming environment [6].
In addition to the Basic Movement Functions and Movement
Constructs, 3DAPS supports a limited range of programming
constructs: integer and float variables, arithmetic expressions,
conditional expressions, if-then-else statements, for-loops, while-
loops, functions, arguments, return variables, and a random
number generator.

2.4 Note on 3D Programming in 3DAPS
Whereas original Alice designers attempted to make 3D more
accessible to novices by removing the concepts of axes, degrees,
rotations and translations from the programming language [6],
3DAPS exposes these complex interactions in 3D graphics. We
hypothesize that 3D problem-solving could support programmatic
learning specifically and computational thinking generally, a topic
we return to later in the paper.

3. RESEARCH DESIGN
The user studies are designed to evaluate interaction with the early
prototype and to assess qualities of learning using a 3D avatar-
based programming environment.

3.1 Participants
We initially recruited three pre-college or early college non-
programmers who were each asked to find a friend to participate
in the study. The purpose of the pair configuration was to
encourage verbal communication of the participants’
programming strategies and other reflections. The three pairs are

denoted as Groups A, B and C. One participant (Greg1 from
Group A; see Table 1 for full listing of participants) was unable to
continue after the first session, and was replaced by Amy, who
had participated in the pilot study and therefore had the same
3DAPS experience as other participants entering Session 2.
Amy’s programming skills were comparable to other participants.

 SESSION 1 SESSIONS 2 & 3

Group A Sandra, Greg Sandra, Amy

Group B Jorge, Mali Jorge, Mali

Group C Paul, Lisa Paul, Lisa

Table 1. Participants by Session. (Note Group A changes.)

3.2 Research Design
Each pair completed three one-hour sessions over alternating days
in a single week.

3.2.1 Library States
The library was initially seeded with five complex movement
functions, demonstrating, minimally, all possible constructs in the
3DAPS language. To simulate a dynamic library, new functions
were added over the course of the study. Additions by researchers
were made between session days, while participant-created
functions were added immediately following each pair-session for
use by others in subsequent sessions. Participants could interact
with these shared code contributions and their resulting
animations, simulating a networked programming community.
This also permitted us to observe interactions with a dynamic
system over time.

3.2.2 Preemptive Syntactical Help
Due to the rigidity of the language syntax and because future
designs will not rely on syntax at all, researchers worked
throughout the study to provide preemptive syntactic help to study
participants.

3.2.3 Session Design
Session 1 began with a short demo and a set of eight tasks
designed to familiarize participants with the system layout, Basic
Movement Function calls, and interacting with the Library. The
remainder of the session was devoted to free time for participants
to “play with the system.”

Session 2 also began with a demo (on a separate machine) of
motions created by researchers and added to the library after
Session 1. Next we instructed participants to spend the rest of the
session creating a motion or motions to share with the library.
Also during this session researchers prompted participants to think
about making part of their routine “repeat, 50 or 100 times.” This
large number was intended to push participants towards
examining and attempting to use the loop construct, so we could
analyze how they acquired expertise to use new constructs.
Session 3 for each pair was divided into three parts: a short
briefing, free programming time, and a debriefing.

3.3 Data Collection
Two digital video cameras recorded participants’ interactions with
the machines and each other. The Camera Side video was at a
high enough resolution and positioned to be able to determine

1 All participant names have been anonymized.

participants’ eye gaze toward each of the two monitors, the
keyboard, paper notes, and each other. Additionally, we used
screen capture software on both machines to generate video of all
their computer interaction activity, including screen state, code
changes, mouse locations, mouse clicks, and Avatar motions.
Audio was captured in four feeds from both cameras and both
computers (See Fig. 2) yielding excellent audio quality even when
participants spoke quietly as they were thinking.

Figure 2. Physical layout of the user testing area

3.4 Methods of Analysis
For analysis of participant activity across multiple audio and
video feeds, we used the Digital Replay System (DRS), software
that supports qualitative analysis and simultaneous reply of
multiple sources and data formats [9]. DRS allows
synchronization of video onto multiple, overlapping video tracks
and qualitative analysis by laying down associated qualitative
coding tracks2.

Figure 3. Screenshot of the DRS analytical environment.

We derived a qualitative analytical coding scheme based on the
data. In a second viewing pass, every programming action for
each participant was analytically coded for behavior type, re-use
location, construct used (Basic Function Call, loop, etc.), and
code-generation technique (typing from scratch, copying-and-

2It is important to note the difference between programming code

created by programming activity and qualitative codes derived
from and used during qualitative analysis.

pasting, changing an existing line). Behavior types initially
included testing, creating, modifying to test, modifying to create,
calibrating, borrowing, browsing, and downloading. The de-
coding category was added after further analysis. Re-use location
described the type of code that a participant was working on: an
original creation, a borrowed piece, or a borrowed function.
Additionally, participant behavior was coded for demonstrations
of 3D-related verbalization, physical enactment or gesturing to
their programs in reference to some aspect of 3D problem-solving.
Pair interactions were coded for instances of collaborative
behavior. For selected “moments” that illustrated noteworthy
behaviors, we created verbal transcripts with supporting physical
behavior transcription, and associated these with representations
of the step-by-step programmatic activities of the users.

3.5 Data Representations in this Paper
The presentation of data excerpts in this paper is modeled after
Flor & Hutchins’ reporting of code development during pair a
programming exercise [8] and Crabtree & Rodden’s reporting of
diverse interaction and data types in hybrid ecologies [7]. We
combine the three elements of verbal, physical and programmatic
activity in succinct representations to best accommodate the
constraints of manuscripts. Researcher observations and
descriptions are presented in Helvetica 8. Verbalizations are
marked within those sections in Italics. Coding excerpts are
labeled and highlighted in boxes.

4. FINDINGS
Analysis of participants’ interactions within the 3DAPS system
provides insight into the possibilities of leveraging code-sharing
and embodied interaction as learning resources.

4.1 Patterns of Programmer-Code Interaction
For each participant, we classified every discrete interaction with
the system as to the code-generation technique and type of
behavior exhibited (testing, creating, modifying to test, modifying
to create, calibrating, borrowing, browsing, and downloading).
From these codes, a few patterns emerged – series of three or four
actions that often occurred in the same sequence. These patterns
(creating, exploring, borrowing, tinkering, and de-coding) access
different resources of the system and generate different types of
learning experiences.

4.1.1 Creating
The creating pattern consisted of writing or copying/pasting a
new movement command, testing that command, evaluating the
results against a desired motion, and then either calibrating the
existing movement (by adjusting rotation numbers) or beginning
again by adding another new command. When creating,
participants generated their own motions from scratch and did not
rely much, if at all, on the library for examples. They used the
results from their own motion commands to interpret how the
system worked and what each command did. Participants who
stayed primarily within this pattern (Amy and Paul) were slower
to incorporate more complex constructs (loops, variables, etc.)
into their programming practice than users who demonstrated
other patterns.

4.1.2 Exploring & Borrowing
When exploring, participants downloaded functions from the
library, and executed them within their graphical environment to
see what they did. Some users then incorporated whole sections of
borrowed code into their creations (Sandra, Paul, and Lisa).

Though these activities allowed users to see the potential of the
system, they did not appear to lead to increased understanding of
programming.

4.1.3 Testing and Tinkering
The testing or “tinkering” pattern included borrowing existing
code, then changing numbers or the order of components to “see
what happens.” Jorge used this behavior almost exclusively, and
from his verbalizations, it was clear that he was attempting to
derive understanding of how the system worked from the motions
that resulted from his changes. On multiple occasions, Jorge
described his behavior of this kind as “tinkering.”

Illustration 1: Rationale for Tinkering
This illustration provides insight into how and why some
participants used the tinkering strategy in an effort to gain
understanding into the meaning of programming constructs.
Struggling to understand the purpose of a variable in a piece of
code that he had borrowed from an example, Jorge asks his
programming partner, “What do you think ʻuptimeʼ is?”

 function SetBallet(up_time) {
 DoTogether {
 RotateRightShoulder(0, 0, -170, up_time);
 RotateRightElbow(0, 0, -60, up_time);
 …

Both participants then turn their attention to the example code that
contained the up_time variable. After isolating and testing the
function that contained up_time, Jorge describes his strategy for
deciphering its meaning, “Ok, I was going to say we could, like,
fiddle with the numbers to see if it does anything.”
Jorge then returns to the original code, replacing one of the
up_time variable instances with the number 5, and testing a call to
the SetBallet function.

 main() {
 SetBallet(0.5);
 TwirlBallet(1);
 }

 function SetBallet(up_time) {
 DoTogether {
 RotateRightShoulder(0, 0, -170, 5);
 RotateRightElbow(0, 0, -60, up_time);
 …

His test produces an unbalanced movement, where the right
shoulder rotates out of the step with the rest of the motion (more
slowly, in this case). After executing the motion a couple of times,
Jorge states his conclusions, “Okay , I don't know what ʻuptimeʼ is
but it definitely affects how they do stuff.”

Though Jorge’s tinkering in this case did not lead to mastery of
the argument and variable constructs, his testing actions and
verbalizations demonstrate how tinkering with borrowed code is
employed as a learning strategy to begin to resolve uncertainty.

4.1.4 De-coding
The participant who experimented with and mastered the most
higher level constructs (function calls, movement constructs,
loops and variables) was Sandra. During the analysis, we
observed her spending long periods of time looking at specific
pieces of code, often borrowed functions or sections. This
seemingly passive action within the system is comparable to the
“pauses” that Beckwith et al. observed in people who are
successful debuggers [2]. After some consideration, we

interpreted Sandra’s pauses as actions of de-coding, or unraveling
the code to, in her words, “figure out how everything works.”

Illustration 2: Sandra creates an acceleration effect
using de-coding strategies
The following video transcript and coding excerpt demonstrates
how Sandra employed this de-coding strategy, utilizing borrowed
code as a learning resource.
Sandra wants to create a Twist dance motion, which she
demonstrates physically with her own body intermittently while
building her program. She creates a composite motion script (A)
by borrowing the TwistHips function and calibrating the arguments
(degrees and time), then creates an original loop construct (B).

Browsing the library, she asks her partner Amy, "Do you
remember which cheer it was where he was stomping and he, like,
kept getting faster?" They decide the motion was the Cheer3
function, which Sandra downloads and stares at for 30 seconds.

Researcher 1 asks, "What are you thinking about?"
Sandra: "You just made him speed up and I'm trying to think about
what did that, so (motioning with mouse over D) it's either the
movement_time or the variable."

In this part of the excerpt, Sandra is trying to use acceleration in
her own motion. She has seen this affect before, during Session
2’s demo. Though she has previously used the loop construct
successfully, she does not fully understand how variables and
arguments work and therefore cannot yet create an acceleration
effect on her own. Instead, she attempts to borrow code from the
library that contains acceleration and modify it to accelerate her
own motion. She locates and downloads the function from the
library, then studies it intently. Her long periods of studying and
subsequent coding actions were interpreted as de-coding.

Sandra then cuts her composite motion (C) and moves it to a
workspace she uses to save code. She then copies/pastes all the
code from Cheer3 (E) into her Main() and runs the script.
 Sandra studies the motion and code. She then cuts/deletes (F)
and replaces (G) with (A) – her previously created Twist motion.

Attempting to achieve the acceleration affect, Sandra has
borrowed a section of code, then modified it to achieve her own
creation by inserting her own code in the correct place.

Sandra runs the script. She watches it closely. This begins an
extended period alternating between studying the Cheer3 function
and her Main() code. Here, Researcher 1 prompts her to think
aloud: “So what are you thinking about?"
Sandra: "I donʼt know. It doesn't look like it's speeding up any. But
that just could be my perception of it… I think it might have
something to do with the numbers." Here she scrolls down to look
at the Cheer3 function.
Sandra: "Ohhh. Huh, that's why." She silently examines the code
in Cheer3, then looks back to her Main function. She hovers her
mouse cursor back and forth over (H) in Main then (I) in Cheer3.
She then deletes the 2 in (H), leaves her cursor there in (H), and
goes back to silently looking at code.

During this extended period of de-coding, through some querying
by the researchers, we know that Sandra is trying to figure out
what the arguments and variables mean and how they work.
Instead of employing an active testing or tinkering strategy, by
repeatedly plugging in new values and running them, she tries to
understand first how the arguments interact as variables within
Cheer3. The following exchange between Sandra and Researcher
1 sheds more light on how Sandra is using example code, a de-
coding strategy, and her desire to create her own motion to
understand new constructs.

Researcher 1: "What are you thinking about?"
Sandra: "I'm thinking I need to write either move_time or wait_time
in these brackets here, because that's what it looks like it did in the
other one."
Researcher 1: "What do you think that would do?"
Sandra: "I think that would make it go faster. But, I also need, you
know, I feel like I need that 90, -180 and 90 (italicized in H; by this
she is referring to degrees in the 3D coordinate system) to tell it
where to go, obviously. Um. I feel like it needs a start time, but
maybe that's what this 0.5 and 1.0 (reference to K) are gonna do.

So I might as well just try it instead of staring at it."

Sandra changes the numeric time values to the variable
movement_time, and runs the script.

Before moving to modify and test a piece of code, Sandra tries to
decipher what the code means, forming a hypothesis for how her
changes will affect the Avatar’s actions. This is the critical
difference between the type of tinkering strategy that Jorge
employed, and the de-coding strategy Sandra uses.
Taken as a whole, this illustration shows Sandra learning to use
unfamiliar programming constructs through exploratory and
creative engagement with the character’s movements and the
representations of the movements in the programming code.
Attempting to mimic the acceleration action that she saw another
avatar do, she looks for instances in existing programs that might
emulate this. Extraction of the code and modification by way of
testing to evaluate the consequential performance of her avatar
eventually result in successful achievement of her goal, and some
understanding—though partial—of the programmatic constructs
that made it possible.

4.2 Conceptualizing & Parsing 3D Movement
Throughout the study, most of the observable pair interaction
focused around conceptualizing movement in 3D. Contemplating,
testing and discussing the 3D coordinate system and axis rotation
of joints consumed large amounts of time for all participants,
though this is not necessarily a negative outcome, as we will
discuss later. Even within creation patterns, participants spent far
more time testing and calibrating, changing numbers in an
existing command or set of commands to bring the created action
closer to the imagined action, than creating new motions. 3D was
very hard for them:
Sandra: “Especially with the rotating, that it's rotating around an
axis so that if you rotate on the y it's going to move like this.”
{Holding her arm straight down, and then rotating her shoulder
joint (and elbow joint) around a vertical axis to twist her hand back
and forth} The hand is going to move like that… I honestly don't
really understand it, that's probably why I'm having a hard time
articulating it.”

This is one of many similar instances where a participant
attempted to understand the 3D coordinate and rotation system
through knowledge and observation of her own body enacting the
desired movement. Five of our seven participants used their own
bodies to mimic the 3D movements performed by the character,
conceptualize movements, and understand rotation axes.

Illustration 3: Amy enacts desired avatar movement
The following excerpt shows a participant enacting movement
with her own body to parse the movements she will need to
generate to make her avatar do the same:

Amy: "So we should make something pretty special, right?" Amy
clears out a large space in the textual window (below the main
function) to use are her "work area," (M).
Amy: "Oh I know what I want to do! I wonder if it could happen.
Could I do like a snowman, like, when you do a snow angel"
(raising both arms up over her head in a snow angel motion.)
Before writing any code, Amy defines her function, "SnowAngel".
Note: she introduces 2 syntax errors here that will not be
addressed until much later.
Amy: "I'm going to have to rotate..." (lifting her arms up at her
sides, rotating at her shoulder joint) "…the shoulder," (continuing
to move her arms up and down 3 more times).
Amy: "Okay, so I'm going to have to rotate right and left at the
same time. And, the, DoTogether..."

Amy: "So it's ro...” (raising her arms up and away again.)
As Amy moves her arm to enact the motions she wants to create,
she looks through available program code to see what might
match to the enacted movement:
Amy turns to Researcher 1. Amy: "So is RotateShoulder like
this?" (lifting her left arm straight out away from her at the side.)
"Or is it like this?" (keeping her arm at her side, she rolls her left
shoulder up, then back in its socket, then back to normal) "…I
don't know, I'll just try it out."
When Amy tests the RotateShoulder motion, the Avatarʼs arm
swings at the shoulder joint through its body – the opposite
direction of her desired motion.

Amy: "Okay, so that's what I want it to do…” So I have to
remember..." Amy then spends about 2 minutes doing 3D
conceptual work, drawing, verbalizing, and thinking. She changes
the direction of the motion (by making it positive), then calibrates
the motion code, repeating a cycle of changing the values, testing,
then evaluating the effect until the Avatar motion matches her
physically conceptualized motion. When she finds the right
rotation, she moves the command into her SnowAngel function.

In this illustration Amy enacts imagined movements for her avatar
using her own body to parse movements to a smaller units of
granularity that approach the programmatic level instruction that
she sees in existing code. This connection between body and
Avatar is key to understanding and manipulating her character in
the 3D graphical world.

5. DISCUSSION
One objective is to understand how non-programmers approach a
programming task that has the appeal of 3D animation as offered
in Alice [6], but without 3D math hidden behind a veil of
simplicity. Another is to theorize on how programmatic learning
takes place in an end-user programming environment that has no
tutorial or teacher.

5.1 Managing Multiple Representations
A way to explain the interactions of the participants with the
environment is to view those interactions as a management of
multiple representations of information. In this case, the
information to be represented in different forms is 3D movement.
Our examination suggests that several representational states are
at work, both visible and invisible. Four representational states of
animation information explain the behaviors we observe. The
imagined action sequence of the avatar is one representational
state that we can say exists in the head of the participant [13]. The
remaining representational states are external representations that
exist in the world [8, 10, 13], and support individual and social
cognition. The second representational state is the physical
enactment of a movement by the participant. We saw this as
having at least three purposes in this study: a) for communicating
to one’s partner the imagined, desired action sequence; b) to parse
large, macro movements (such as rotating a shoulder as we saw in
Illustration 2) into smaller movements that map to a 3D
coordinate system; and c) to parse those same macro movements
to smaller component movements that begin to map to the
granularity of programmatic constructs.
A third representational state is that of the programming code that
creates movement for the avatar (and within this, there are
multiple representational states with respect to program
modularity, the conventions of the programming language, and
more, which here we will collapse into this single higher-order
state). The fourth representational state is the movement of the
avatar.
When testing, creating, modifying, borrowing, and de-coding
behaviors are considered from this perspective, we can see that
they involve the management of multiple representations of states
of movement. Management of the representational states is not
sequential in any kind of pre-determined sense; rather there is
ongoing interplay between the employment and elaboration of
representations.
From this vantage point, we may begin to see from which point
users enter and tend to work within the representational system,
resolve uncertainty, and maximize their creative skill. Some of the
action employed to manage representational states is “pragmatic”
while some is (also) what we would identify as “epistemic” [13].
Kirsh and Maglio explain that whereas pragmatic action changes
the state of the world to bring it closer to some goal and reduce
the cognitive burden on the actor by limiting the problem space,
epistemic action captures a more interactional relationship
between the state of the world and the cognition of the individual
such that it changes the cognitive states of the individual
simultaneously.
We can see the use of the representational states at work in the
illustrations provided earlier. Amy shifted from an embodied
representation of a desired action to an instructional
(programmatic) one, using the Avatar’s movements along the way
to guide her creation/calibration. Sandra began with avatar

movement she wanted to emulate, moved to searching for its
programmatic representation, and then by moving back and forth
between modifications on the programmatic representation and
the Avatar’s movement, achieved her goal and better understood
aspects of programming. In this way, code-sharing, or code-
borrowing and code-modification, in combination with graphical
testing of the modifications, is an opportunity for representational
transition that can result in learning.
Another instance of problem-solving that we saw at least once in
each group illustrates how gaps in incomplete representations
come to light when compared to other representations, and are
opportunities for learning that in turn, elaborate incomplete
representations. Programming the avatar requires that, to string or
loop together borrowed program code into a realistic Avatar
movement, the Avatar move back to a neutral position between
transitions. Users tended to miss this requirement. These users
would program the Avatar to execute what they thought was the
next step in an action sequence, failing to realize that the start for
the new action began at the finish point of the previous action, and
that the Avatar (and its supporting code) did not “know” to
resume a neutral stance on its own. This ended up producing
contortions of the Avatar impossible for a real human body, which
was puzzling (though also amusing) to users. It was at this point
that a major insight was often made about the programmatic
representation: that the program required more discrete and lower-
level instructions than non-programmers realized.

Illustration 4: Discovering the representation gap
The following except shows Group B (Session 3) making this
cognitive move towards a better understanding of what the
programmatic representation required to produce the desired
Avatar movement.

Jorge: "Something, something didn't work."
Mali: "I think you need to put in there for him to reset.”
Jorge ignores the comment and changes the
syntax of the loop heʼs testing, thinking that may
have something to do with the strange result.
Jorge: "He didn't do strange things (before)…
and maybe he won't now." He runs his script
again.
Mali: "No, he totally will, because he needs to go
back to the normal position."
Jorge: "What do you mean?"

Mali: "Normal standing position, because he's doing all these
motions from that, like, already in that pose."
Jorge: "…Ooohhh."

Participants sometimes mapped the need-to-return-to-neutral
discovery back to real 3D movement by enacting what the same
move would require by the human body, and in so doing, we
speculate, also fleshed out an impoverished representational state
for human movement (which is so embodied that we do not
normally parse it to finer granularities of movement). Mali and
Jorge summed this up in the final debrief while talking about a
video game:
Jorge: "It makes a lot more sense now. Why they [computers] are
so limited."
Mali: "In the first Sims game if you take the ladder off the
swimming pool, they won't get out. They'll drown. It's ridiculous...
Jorge: "If you take out an important function, either he doesn't
move at all, or you know... (making a motion to contort his body

as in Illustration 3)... it makes more sense now."

5.2 A Gateway to Computational Thinking
These comments by Jorge and Mali, part of a larger conversation
about how the two better understand now why the games they
play behave as they do, indicate progress toward achieving
“computational thinking,” a skill that Wing believes has growing
importance in today’s world [17]. Other participants showed
growth in computational thinking when realizing—because of the
multiple representational states that they were able to work with in
this environment—that looped actions have to return to the
starting state between iterations, how to use heuristics to
determine rotation planes, how to break complex human actions
into precise components, etc.
Many of these breakthroughs in computational thinking related
directly to manipulating the Avatar in unconcealed 3D. In many
ways, our findings validate the early Alice design decisions to
remove the demand for mathematical understanding of 3D [6].
The time spent dealing with these complexities was considerable,
but does this consumption constitute a cognitive tax and
negatively impact our overall goal of enabling novices to
program? Or does it in fact fit within that goal? Though there is
more work to do in answering these questions, based on this
research we feel that the time spent understanding 3D movement
represented simultaneous advancement toward programmatic
understanding, and that the two worked in tandem, where actions
taken upon the system of representations were inter-relational—
epistemic—in nature [13].

6. FUTURE WORK
One future direction for the 3DAPS system is to embed the
system within an existing online social network. Again, one
strong piece of rationale for that design decision is the
motivational component. Another justification is that such a move
might broaden participation by bringing the end-user
programming to a wider audience. However, this also opens up
another connection between programmer and Avatar: a
connection of identity. Future work will explore that connection,
as well as the motivational impacts and pathways to learning in a
socially-networked Avatar programming environment.

7. CONCLUSION
The 3DAPS system tested here and the larger social networked
version that will eventually subsume it do not overtly “teach”
programming and computational thinking. Instead, the hope is that
such environments can provide motivation for and access to
learning. In an end-user environment without a tutorial or a
teacher, the information required for learning must be embedded
in the system. This research shows how interaction and transition
from coded representational states to graphically enacted motions,
resulting from code-sharing and modification, can lead to
programmatic learning. It also show how a 3D Avatar
programming system can leverage existing, embodied knowledge
to unravel less familiar knowledge—that of programmatic
instruction—with 3D movement as language of translation
between the representations.

8. ACKNOWLEDGMENTS
This research has been supported by the US National Science
Foundation through the NSF Grant IIS-0546315 and an NSF
Graduate Research Fellowship awarded to the first author.

9. REFERENCES
[1] Alac, M. Moving Android: On Social Robots and Body-in-

Interaction. Social Studies of Science 39, 4 (2009), 37.
[2] Beckwith, L., C. Kissinger, M. Burnett, S. Wiedenbeck, J.

Lawrance, A. Blackwell, & C. Cook. Tinkering and gender
in end-user programmers' debugging. In Proc. SIGCHI 2006,
ACM Press, 231-240.

[3] Brandt, J., M. Dontcheva, M. Weskamp, & S.R. Klemmer,
Example-centric programming: integrating web search into
the development environment, in Proceedings of the 28th
international conference on Human factors in computing
systems. 2010, ACM: Atlanta, Georgia, USA.

[4] Brandt, J., P.J. Guo, J. Lewenstein, M. Dontcheva, & S.R.
Klemmer, Two studies of opportunistic programming:
interleaving web foraging, learning, and writing code, in
Proceedings of the 27th international conference on Human
factors in computing systems. 2009, ACM: Boston, MA.

[5] Bruckman, A. & M. Resnick. The MediaMOO Project:
Constructionism and Professional Community. Convergence
1, 1 (1995), 17.

[6] Conway, M., S. Audia, T. Burnette, D. Cosgrove, & K.
Christiansen. Alice: lessons learned from building a 3D
system for novices. In Proc. SIGCHI 2000, ACM Press, 486-
493.

[7] Crabtree, A. & T. Rodden. Hybrid ecologies: understanding
cooperative interaction in emerging physical-digital
environments. Personal and Ubiquitous Computing 12, 7
(2008), 481-493.

[8] Flor, N. & E. Hutchins, Analyzing Distributed Cognition in
Software Teams: A Case Study of Team Programming
During Perfective Software Maintenance, in Empirical
Studies of Programmers: Fourth Workshop, J. Koenemann-
Belliveau, T.G. Moher, and S.P. Robertson, Editors. 1991,
Ablex: Norwood, NJ.

[9] Greenhalgh, C., A. French, P. Tennent, J. Humble, & A.
Crabtree. From replaytool to digital replay system. In Proc.
3rd Intl Conference on e-Social Science, Citeseer.

[10] Hutchins, E. Cognition in the Wild. Cambridge, MA. MIT
press 1995.

[11] Kelleher, C. & R. Pausch. Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers. ACM Comput. Surv.
37, 2 (2005), 83-137.

[12] Kelleher, C., R. Pausch, & S. Kiesler. Storytelling alice
motivates middle school girls to learn computer
programming. In Proc. SIGCHI 2007, ACM Press, 1455-64.

[13] Kirsh, D. & P. Maglio. On distinguishing epistemic from
pragmatic action. Cognitive Science: A Multidisciplinary
Journal 18, 4 (1994), 513-549.

[14] Papert, S. Mindstorms: children, computers, and powerful
ideas. New York. Basic Books. viii, 230 p., 1980.

[15] Papert, S., Situating constructionism, in Constructionism, S.
Papert & I. Harel, Editors. 1991, Ablex: Norwood, NJ, 1-11.

[16] Resnick, M., J. Maloney, A. Monroy-Hernendez, N. Rusk, E.
Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver,
B. Silverman, & Y. Kafai. Scratch: programming for all.
Commun. ACM 52, 11 (2009), 60-67.

[17] Wing, J.M. Computational thinking. Commun. ACM 49, 3
(2006), 33-35.

