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ABSTRACT 
This paper presents results from a video-based analysis of non-
programmers’ use of a new platform for end-user programming, 
the 3D Avatar Programming System (3DAPS). We use micro-
ethnographic analytic methods to understand how learning about 
programming occurs. We discuss how the management of internal 
and external cognitive representations of 3D movement 
information leverages existing, embodied knowledge to unravel 
less familiar knowledge—that of programmatic instruction. In 
other words, the 3D movement serves as the language of 
translation between the representations to support learning. We 
also examine how shared code is used as an educational resource 
in a learning environment without a teacher. 

Categories and Subject Descriptors 
K.3.1 Computer Uses in Education - Collaborative learning; K.3.2 
Computer and Information Science Education; H.5.2 Information 
Interfaces and Presentation—User Interfaces (D.2.2, H.1.2, I.3.6); 
D.2.6 Programming Environments - Graphical environments. 
General Terms 
Design, Human Factors, Languages 

Keywords 
Avatars, broadening participation, computer science education, 
constructionism, distributed cognition, end-user programming, 
interaction analysis, online-identity, social networks. 

1. INTRODUCTION 
Computer science educators and education researchers have 
developed a variety of end-user programming systems aimed at 
teaching computer-programming skills to novices [11]. In this 
paper we present results from a video-based analysis of the use of 
a new platform for end-user programming, the 3D Avatar 
Programming System (3DAPS), designed to include features that 
would further appeal to would-be programmers—that of 
programming an avatar as a personal representation of self that 
could then appear in different social networking forums.  

 

Here, we examine how a target audience uses such a system, not 
as a simple matter of identifying usability problems, but rather to 
formulate understandings about programming learning, with a 
longer term hope of broadening participation in the computing 
field.  After setting up a research design that would allow for 
extended engagement with the programming environment, a 
detailed video analysis combined with log data analysis revealed 
learning patterns that built on the ability to share code with known 
and unknown others. It also unexpectedly revealed learning 
behaviors that relied on embodied cognition to translate the 
seemingly esoteric activities of programming into more personally 
meaningful action.  

1.1 Prior Work & Design Rationale 
This research works from the premise of the popular end-user 
programming platform, Alice—that 3D content generation can be 
a motivational draw for novices to computer programming [6, 12]. 
The 3DAPS platform allows users, ideally novice programmers, 
to control the actions of a three-dimensional Avatar. 

In addition, long-standing research in end-user programming and 
education holds that the sharing of personal creations supports 
powerful constructionist learning experiences [5, 14, 15]. Another 
existing end-user programming system, Scratch, exploits this 
phenomenon in a socially-networked, Web 2.0 environment, 
leveraging sharing for peer support and as motivation to 
participate [16] The 3DAPS platform incorporates a dynamic 
library that allows users to share, borrow, and modify action code. 

1.2 Research Objectives 
This research explores how 3D content and sharing can be used as 
more than mere motivation for participation within end-user 
programming platforms – but also as resources through which 
learning occurs. Brandt et al. show how current programming 
practice incorporates code-sharing [4], and investigate methods 
for supporting this behavior [3]. In this paper, we show how 
novice programmers, within an environment that has no “teacher,” 
use borrowed code in different ways to learn computer-
programming skills. 

In addition, this investigation unexpectedly uncovered how novice 
programmers mapped 3D graphical representation to the actions 
of their own bodies to serve as a resource for programming. Alac 
reports on a similar phenomenon, showing how scientists learning 
how to program a robot used their own bodies to understand, 
visualize and control the movements [1]. In her work, the 
connection between self and robotic representation of self, as well 
as the scientists’ exploration of motion within these two different 
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forms (what Alac called body-in-interaction), was integral to the 
learning process. The results of this research reveal forms of 
embodied learning, and show how the connection of physical self 
to a digital representation of self (a 3D Avatar), can drive learning 
within an end-user programming environment. 
 

2. PROGRAMMING ENVIRONMENT 
The 3DAPS working prototype contains several key design 
components to allow for focused evaluation of both current 
functionality and feasibility as an educational tool. The focus of 
this first major phase of research was to isolate and evaluate 
conceptual building blocks of the full-fidelity system. Though 
future design directions will investigate drag-and-drop and 
graphical programming, the current system uses a text-based 
approximation of JavaScript, intended to make programming 
more user-friendly, but flexible enough to serve as an easily 
modifiable research tool.  

2.1 3DAPS System Design 
3DAPS consists of four components: the Programming 
Environment, the 3D Graphical Display Window, the Construct 
Window and the Library Window (Fig. 1). The Programming 
Environment is a textual window that contains code that runs a 
motion script created by a user. The Graphical Display Window 
contains a 3D Avatar, currently composed of simple shapes. 
Scripts created in the programming window animate the Avatar in 
real time. The Construct Window provides textual examples of 
different programming constructs (loops, conditional statements, 
etc.) that users can use for reference, or copy/paste into their 
programming window. The Library Window contains the textual 
code of previously created functions that have been shared with 
the library. Users can download functions from the library into 
their Programming Window using copy/paste and see the motions 
they create using a simple function call. Users can manipulate 
downloaded code in any way they wish, changing existing 
functions or copying/pasting any piece of code into their own 
functions. They can then share their motion and its code with the 
library for other users to see and use. The <Share> button was 
simulated wizard-of-oz style during the user studies.  

 
Figure 1. 3D Avatar Programming System layout.  

Buttons at bottom left say Run, Stop, Reset Me, Share. 

2.2 System Specifications 
The Programming Window and the Graphical Display Window 
exist as a single webpage run through a web browser. The system 
is implemented in JavaScript using Google’s O3D plug-in to 
render the 3D graphics in real time. O3D provides graphical 
support and compatibility with several 3D modeling systems that 
will enable the future system to animate high-quality 3D Avatar 
models. For these studies, the Construct and Library Windows 

were simple text windows. In future implementations, constructs 
will be drag-and-droppable and the library will feature one-click 
testing and downloading. 

2.3 Programming Language 
The 3D Avatar programming language resembles a limited form 
of JavaScript with similar syntax. At its base are three types of 
Basic Movement Functions that users can call: 

Move(x, y, z, time); 
Rotate(x, x, y, time); 
RotateLeftHip(x, y, z, time); 

The Move command moves the Avatar x units along the X-axis 
(left/right), y units along the Y-axis (up/down), and z units along 
the Z-axis (forward/backward) in time seconds. The Rotate 
command rotates the Avatar x degrees around the X-axis, y 
degrees around the Y-axis, and z degrees around the Z-axis in time 
seconds. The RotateJoint commands take the same arguments as 
the Rotate command. As with a human body, a rotation of a joint 
will rotate all of the bones and joints below that joint, as well as 
their axes of rotation. 
There are two movement constructs built into the Avatar 
Programming Language. The DoInOrder Movement Construct 
specifies a list of motions that should be executed in order, one at 
a time. The DoTogether Movement Construct specifies a list of 
motions that should be executed all at the same time. The latter 
construct, for example, could be used to make an Avatar move 
forward and swing both arms and legs at the same time in a 
walking motion. Movement Constructs can be nested inside each 
other and can contain other constructs and any other combination 
of code. We borrowed the DoInOrder and DoTogether terms from 
the functionally similar Animation Objects in the Alice 
programming environment [6].  
In addition to the Basic Movement Functions and Movement 
Constructs, 3DAPS supports a limited range of programming 
constructs: integer and float variables, arithmetic expressions, 
conditional expressions, if-then-else statements, for-loops, while-
loops, functions, arguments, return variables, and a random 
number generator.  

2.4 Note on 3D Programming in 3DAPS 
Whereas original Alice designers attempted to make 3D more 
accessible to novices by removing the concepts of axes, degrees, 
rotations and translations from the programming language [6], 
3DAPS exposes these complex interactions in 3D graphics. We 
hypothesize that 3D problem-solving could support programmatic 
learning specifically and computational thinking generally, a topic 
we return to later in the paper.  

3. RESEARCH DESIGN 
The user studies are designed to evaluate interaction with the early 
prototype and to assess qualities of learning using a 3D avatar-
based programming environment.  

3.1 Participants 
We initially recruited three pre-college or early college non-
programmers who were each asked to find a friend to participate 
in the study. The purpose of the pair configuration was to 
encourage verbal communication of the participants’ 
programming strategies and other reflections. The three pairs are 



denoted as Groups A, B and C. One participant (Greg1 from 
Group A; see Table 1 for full listing of participants) was unable to 
continue after the first session, and was replaced by Amy, who 
had participated in the pilot study and therefore had the same 
3DAPS experience as other participants entering Session 2. 
Amy’s programming skills were comparable to other participants.  

 SESSION 1 SESSIONS 2 & 3 

Group A Sandra, Greg Sandra, Amy 

Group B Jorge, Mali Jorge, Mali 

Group C Paul, Lisa  Paul, Lisa  

Table 1. Participants by Session. (Note Group A changes.) 

3.2 Research Design 
Each pair completed three one-hour sessions over alternating days 
in a single week.  

3.2.1 Library States  
The library was initially seeded with five complex movement 
functions, demonstrating, minimally, all possible constructs in the 
3DAPS language. To simulate a dynamic library, new functions 
were added over the course of the study. Additions by researchers 
were made between session days, while participant-created 
functions were added immediately following each pair-session for 
use by others in subsequent sessions. Participants could interact 
with these shared code contributions and their resulting 
animations, simulating a networked programming community. 
This also permitted us to observe interactions with a dynamic 
system over time. 

3.2.2 Preemptive Syntactical Help  
Due to the rigidity of the language syntax and because future 
designs will not rely on syntax at all, researchers worked 
throughout the study to provide preemptive syntactic help to study 
participants.  

3.2.3 Session Design 
Session 1 began with a short demo and a set of eight tasks 
designed to familiarize participants with the system layout, Basic 
Movement Function calls, and interacting with the Library. The 
remainder of the session was devoted to free time for participants 
to “play with the system.”  

Session 2 also began with a demo (on a separate machine) of 
motions created by researchers and added to the library after 
Session 1. Next we instructed participants to spend the rest of the 
session creating a motion or motions to share with the library. 
Also during this session researchers prompted participants to think 
about making part of their routine “repeat, 50 or 100 times.” This 
large number was intended to push participants towards 
examining and attempting to use the loop construct, so we could 
analyze how they acquired expertise to use new constructs.  
Session 3 for each pair was divided into three parts: a short 
briefing, free programming time, and a debriefing.  

3.3 Data Collection 
Two digital video cameras recorded participants’ interactions with 
the machines and each other. The Camera Side video was at a 
high enough resolution and positioned to be able to determine 

                                                                 
1 All participant names have been anonymized. 

participants’ eye gaze toward each of the two monitors, the 
keyboard, paper notes, and each other. Additionally, we used 
screen capture software on both machines to generate video of all 
their computer interaction activity, including screen state, code 
changes, mouse locations, mouse clicks, and Avatar motions. 
Audio was captured in four feeds from both cameras and both 
computers (See Fig. 2) yielding excellent audio quality even when 
participants spoke quietly as they were thinking. 
 

 
Figure 2. Physical layout of the user testing area 

3.4 Methods of Analysis 
For analysis of participant activity across multiple audio and 
video feeds, we used the Digital Replay System (DRS), software 
that supports qualitative analysis and simultaneous reply of 
multiple sources and data formats [9]. DRS allows 
synchronization of video onto multiple, overlapping video tracks 
and qualitative analysis by laying down associated qualitative 
coding tracks2.  

 
Figure 3. Screenshot of the DRS analytical environment. 

We derived a qualitative analytical coding scheme based on the 
data. In a second viewing pass, every programming action for 
each participant was analytically coded for behavior type, re-use 
location, construct used (Basic Function Call, loop, etc.), and 
code-generation technique (typing from scratch, copying-and-
                                                                 
2It is important to note the difference between programming code 

created by programming activity and qualitative codes derived 
from and used during qualitative analysis.  



pasting, changing an existing line). Behavior types initially 
included testing, creating, modifying to test, modifying to create, 
calibrating, borrowing, browsing, and downloading. The de-
coding category was added after further analysis. Re-use location 
described the type of code that a participant was working on: an 
original creation, a borrowed piece, or a borrowed function. 
Additionally, participant behavior was coded for demonstrations 
of 3D-related verbalization, physical enactment or gesturing to 
their programs in reference to some aspect of 3D problem-solving. 
Pair interactions were coded for instances of collaborative 
behavior. For selected “moments” that illustrated noteworthy 
behaviors, we created verbal transcripts with supporting physical 
behavior transcription, and associated these with representations 
of the step-by-step programmatic activities of the users.  

3.5 Data Representations in this Paper 
The presentation of data excerpts in this paper is modeled after 
Flor & Hutchins’ reporting of code development during pair a 
programming exercise [8] and Crabtree & Rodden’s reporting of 
diverse interaction and data types in hybrid ecologies [7]. We 
combine the three elements of verbal, physical and programmatic 
activity in succinct representations to best accommodate the 
constraints of manuscripts. Researcher observations and 
descriptions are presented in Helvetica 8. Verbalizations are 
marked within those sections in Italics. Coding excerpts are 
labeled and highlighted in boxes.  

4. FINDINGS 
Analysis of participants’ interactions within the 3DAPS system 
provides insight into the possibilities of leveraging code-sharing 
and embodied interaction as learning resources. 

4.1 Patterns of Programmer-Code Interaction 
For each participant, we classified every discrete interaction with 
the system as to the code-generation technique and type of 
behavior exhibited (testing, creating, modifying to test, modifying 
to create, calibrating, borrowing, browsing, and downloading). 
From these codes, a few patterns emerged – series of three or four 
actions that often occurred in the same sequence. These patterns 
(creating, exploring, borrowing, tinkering, and de-coding) access 
different resources of the system and generate different types of 
learning experiences. 

4.1.1 Creating 
The creating pattern consisted of writing or copying/pasting a 
new movement command, testing that command, evaluating the 
results against a desired motion, and then either calibrating the 
existing movement (by adjusting rotation numbers) or beginning 
again by adding another new command. When creating, 
participants generated their own motions from scratch and did not 
rely much, if at all, on the library for examples. They used the 
results from their own motion commands to interpret how the 
system worked and what each command did. Participants who 
stayed primarily within this pattern (Amy and Paul) were slower 
to incorporate more complex constructs (loops, variables, etc.) 
into their programming practice than users who demonstrated 
other patterns. 

4.1.2 Exploring & Borrowing 
When exploring, participants downloaded functions from the 
library, and executed them within their graphical environment to 
see what they did. Some users then incorporated whole sections of 
borrowed code into their creations (Sandra, Paul, and Lisa). 

Though these activities allowed users to see the potential of the 
system, they did not appear to lead to increased understanding of 
programming. 

4.1.3 Testing and Tinkering 
The testing or “tinkering” pattern included borrowing existing 
code, then changing numbers or the order of components to “see 
what happens.” Jorge used this behavior almost exclusively, and 
from his verbalizations, it was clear that he was attempting to 
derive understanding of how the system worked from the motions 
that resulted from his changes. On multiple occasions, Jorge 
described his behavior of this kind as “tinkering.” 

Illustration 1: Rationale for Tinkering 
This illustration provides insight into how and why some 
participants used the tinkering strategy in an effort to gain 
understanding into the meaning of programming constructs.  
Struggling to understand the purpose of a variable in a piece of 
code that he had borrowed from an example, Jorge asks his 
programming partner, “What do you think ʻuptimeʼ is?” 

  function SetBallet(up_time) { 
     DoTogether { 
       RotateRightShoulder(0, 0, -170, up_time); 
       RotateRightElbow(0, 0, -60, up_time); 
       … 

Both participants then turn their attention to the example code that 
contained the up_time variable. After isolating and testing the 
function that contained up_time, Jorge describes his strategy for 
deciphering its meaning, “Ok, I was going to say we could, like, 
fiddle with the numbers to see if it does anything.” 
Jorge then returns to the original code, replacing one of the 
up_time variable instances with the number 5, and testing a call to 
the SetBallet function. 

   main() { 
     SetBallet(0.5); 
     TwirlBallet(1); 
   } 

   function SetBallet(up_time) { 
     DoTogether { 
       RotateRightShoulder(0, 0, -170, 5); 
       RotateRightElbow(0, 0, -60, up_time); 
       … 

His test produces an unbalanced movement, where the right 
shoulder rotates out of the step with the rest of the motion (more 
slowly, in this case). After executing the motion a couple of times, 
Jorge states his conclusions, “Okay , I don't know what ʻuptimeʼ is 
but it definitely affects how they do stuff.” 

Though Jorge’s tinkering in this case did not lead to mastery of 
the argument and variable constructs, his testing actions and 
verbalizations demonstrate how tinkering with borrowed code is 
employed as a learning strategy to begin to resolve uncertainty. 

4.1.4 De-coding 
The participant who experimented with and mastered the most 
higher level constructs (function calls, movement constructs, 
loops and variables) was Sandra. During the analysis, we 
observed her spending long periods of time looking at specific 
pieces of code, often borrowed functions or sections. This 
seemingly passive action within the system is comparable to the 
“pauses” that Beckwith et al. observed in people who are 
successful debuggers [2]. After some consideration, we 



interpreted Sandra’s pauses as actions of de-coding, or unraveling 
the code to, in her words, “figure out how everything works.” 

Illustration 2: Sandra creates an acceleration effect 
using de-coding strategies 
The following video transcript and coding excerpt demonstrates 
how Sandra employed this de-coding strategy, utilizing borrowed 
code as a learning resource. 
Sandra wants to create a Twist dance motion, which she 
demonstrates physically with her own body intermittently while 
building her program. She creates a composite motion script (A) 
by borrowing the TwistHips function and calibrating the arguments 
(degrees and time), then creates an original loop construct (B). 

 
Browsing the library, she asks her partner Amy, "Do you 
remember which cheer it was where he was stomping and he, like, 
kept getting faster?" They decide the motion was the Cheer3 
function, which Sandra downloads and stares at for 30 seconds. 

 
Researcher 1 asks, "What are you thinking about?"  
Sandra: "You just made him speed up and I'm trying to think about 
what did that, so (motioning with mouse over D) it's either the 
movement_time or the variable." 

In this part of the excerpt, Sandra is trying to use acceleration in 
her own motion. She has seen this affect before, during Session 
2’s demo. Though she has previously used the loop construct 
successfully, she does not fully understand how variables and 
arguments work and therefore cannot yet create an acceleration 
effect on her own. Instead, she attempts to borrow code from the 
library that contains acceleration and modify it to accelerate her 
own motion. She locates and downloads the function from the 
library, then studies it intently. Her long periods of studying and 
subsequent coding actions were interpreted as de-coding. 

Sandra then cuts her composite motion (C) and moves it to a 
workspace she uses to save code. She then copies/pastes all the 
code from Cheer3 (E) into her Main() and runs the script. 
 Sandra studies the motion and code. She then cuts/deletes (F) 
and replaces (G) with (A) – her previously created Twist motion. 

 

 
Attempting to achieve the acceleration affect, Sandra has 
borrowed a section of code, then modified it to achieve her own 
creation by inserting her own code in the correct place.  

 
Sandra runs the script. She watches it closely. This begins an 
extended period alternating between studying the Cheer3 function 
and her Main() code. Here, Researcher 1 prompts her to think 
aloud: “So what are you thinking about?" 
Sandra: "I donʼt know. It doesn't look like it's speeding up any. But 
that just could be my perception of it… I think it might have 
something to do with the numbers." Here she scrolls down to look 
at the Cheer3 function. 
Sandra: "Ohhh. Huh, that's why." She silently examines the code 
in Cheer3, then looks back to her Main function. She hovers her 
mouse cursor back and forth over (H) in Main then (I) in Cheer3. 
She then deletes the 2 in (H), leaves her cursor there in (H), and 
goes back to silently looking at code. 

During this extended period of de-coding, through some querying 
by the researchers, we know that Sandra is trying to figure out 
what the arguments and variables mean and how they work. 
Instead of employing an active testing or tinkering strategy, by 
repeatedly plugging in new values and running them, she tries to 
understand first how the arguments interact as variables within 
Cheer3. The following exchange between Sandra and Researcher 
1 sheds more light on how Sandra is using example code, a de-
coding strategy, and her desire to create her own motion to 
understand new constructs. 

Researcher 1: "What are you thinking about?"  
Sandra: "I'm thinking I need to write either move_time or wait_time 
in these brackets here, because that's what it looks like it did in the 
other one." 
Researcher 1: "What do you think that would do?"  
Sandra: "I think that would make it go faster. But, I also need, you 
know, I feel like I need that 90, -180 and 90 (italicized in H; by this 
she is referring to degrees in the 3D coordinate system) to tell it 
where to go, obviously. Um. I feel like it needs a start time, but 
maybe that's what this 0.5 and 1.0 (reference to K) are gonna do. 



So I might as well just try it instead of staring at it." 

 
Sandra changes the numeric time values to the variable 
movement_time, and runs the script.  

Before moving to modify and test a piece of code, Sandra tries to 
decipher what the code means, forming a hypothesis for how her 
changes will affect the Avatar’s actions. This is the critical 
difference between the type of tinkering strategy that Jorge 
employed, and the de-coding strategy Sandra uses. 
Taken as a whole, this illustration shows Sandra learning to use 
unfamiliar programming constructs through exploratory and 
creative engagement with the character’s movements and the 
representations of the movements in the programming code. 
Attempting to mimic the acceleration action that she saw another 
avatar do, she looks for instances in existing programs that might 
emulate this. Extraction of the code and modification by way of 
testing to evaluate the consequential performance of her avatar 
eventually result in successful achievement of her goal, and some 
understanding—though partial—of the programmatic constructs 
that made it possible.  

4.2 Conceptualizing & Parsing 3D Movement 
Throughout the study, most of the observable pair interaction 
focused around conceptualizing movement in 3D. Contemplating, 
testing and discussing the 3D coordinate system and axis rotation 
of joints consumed large amounts of time for all participants, 
though this is not necessarily a negative outcome, as we will 
discuss later. Even within creation patterns, participants spent far 
more time testing and calibrating, changing numbers in an 
existing command or set of commands to bring the created action 
closer to the imagined action, than creating new motions. 3D was 
very hard for them: 
Sandra: “Especially with the rotating, that it's rotating around an 
axis so that if you rotate on the y it's going to move like this.” 
{Holding her arm straight down, and then rotating her shoulder 
joint (and elbow joint) around a vertical axis to twist her hand back 
and forth} The hand is going to move like that… I honestly don't 
really understand it, that's probably why I'm having a hard time 
articulating it.” 

This is one of many similar instances where a participant 
attempted to understand the 3D coordinate and rotation system 
through knowledge and observation of her own body enacting the 
desired movement. Five of our seven participants used their own 
bodies to mimic the 3D movements performed by the character, 
conceptualize movements, and understand rotation axes.  

Illustration 3: Amy enacts desired avatar movement  
The following excerpt shows a participant enacting movement 
with her own body to parse the movements she will need to 
generate to make her avatar do the same: 

Amy: "So we should make something pretty special, right?" Amy 
clears out a large space in the textual window (below the main 
function) to use are her "work area," (M). 
Amy: "Oh I know what I want to do! I wonder if it could happen. 
Could I do like a snowman, like, when you do a snow angel" 
(raising both arms up over her head in a snow angel motion.) 
Before writing any code, Amy defines her function, "SnowAngel". 
Note: she introduces 2 syntax errors here that will not be 
addressed until much later. 
Amy: "I'm going to have to rotate..." (lifting her arms up at her 
sides, rotating at her shoulder joint) "…the shoulder," (continuing 
to move her arms up and down 3 more times). 
Amy: "Okay, so I'm going to have to rotate right and left at the 
same time. And, the, DoTogether..." 

 
Amy: "So it's ro...” (raising her arms up and away again.) 
As Amy moves her arm to enact the motions she wants to create, 
she looks through available program code to see what might 
match to the enacted movement: 
Amy turns to Researcher 1. Amy: "So is RotateShoulder like 
this?" (lifting her left arm straight out away from her at the side.) 
"Or is it like this?" (keeping her arm at her side, she rolls her left 
shoulder up, then back in its socket, then back to normal) "…I 
don't know, I'll just try it out."  
When Amy tests the RotateShoulder motion, the Avatarʼs arm 
swings at the shoulder joint through its body – the opposite 
direction of her desired motion.  

  

Amy: "Okay, so that's what I want it to do…” So I have to 
remember..."  Amy then spends about 2 minutes doing 3D 
conceptual work, drawing, verbalizing, and thinking.  She changes 
the direction of the motion (by making it positive), then calibrates 
the motion code, repeating a cycle of changing the values, testing, 
then evaluating the effect until the Avatar motion matches her 
physically conceptualized motion. When she finds the right 
rotation, she moves the command into her SnowAngel function. 

 
 

In this illustration Amy enacts imagined movements for her avatar 
using her own body to parse movements to a smaller units of 
granularity that approach the programmatic level instruction that 
she sees in existing code. This connection between body and 
Avatar is key to understanding and manipulating her character in 
the 3D graphical world. 



5. DISCUSSION 
One objective is to understand how non-programmers approach a 
programming task that has the appeal of 3D animation as offered 
in Alice [6], but without 3D math hidden behind a veil of 
simplicity. Another is to theorize on how programmatic learning 
takes place in an end-user programming environment that has no 
tutorial or teacher. 

5.1 Managing Multiple Representations  
A way to explain the interactions of the participants with the 
environment is to view those interactions as a management of 
multiple representations of information. In this case, the 
information to be represented in different forms is 3D movement.  
Our examination suggests that several representational states are 
at work, both visible and invisible. Four representational states of 
animation information explain the behaviors we observe. The 
imagined action sequence of the avatar is one representational 
state that we can say exists in the head of the participant [13]. The 
remaining representational states are external representations that 
exist in the world [8, 10, 13], and support individual and social 
cognition. The second representational state is the physical 
enactment of a movement by the participant. We saw this as 
having at least three purposes in this study: a) for communicating 
to one’s partner the imagined, desired action sequence; b) to parse 
large, macro movements (such as rotating a shoulder as we saw in 
Illustration 2) into smaller movements that map to a 3D 
coordinate system; and c) to parse those same macro movements 
to smaller component movements that begin to map to the 
granularity of programmatic constructs. 
A third representational state is that of the programming code that 
creates movement for the avatar (and within this, there are 
multiple representational states with respect to program 
modularity, the conventions of the programming language, and 
more, which here we will collapse into this single higher-order 
state). The fourth representational state is the movement of the 
avatar. 
When testing, creating, modifying, borrowing, and de-coding 
behaviors are considered from this perspective, we can see that 
they involve the management of multiple representations of states 
of movement. Management of the representational states is not 
sequential in any kind of pre-determined sense; rather there is 
ongoing interplay between the employment and elaboration of 
representations. 
From this vantage point, we may begin to see from which point 
users enter and tend to work within the representational system, 
resolve uncertainty, and maximize their creative skill. Some of the 
action employed to manage representational states is “pragmatic” 
while some is (also) what we would identify as “epistemic” [13]. 
Kirsh and Maglio explain that whereas pragmatic action changes 
the state of the world to bring it closer to some goal and reduce 
the cognitive burden on the actor by limiting the problem space, 
epistemic action captures a more interactional relationship 
between the state of the world and the cognition of the individual 
such that it changes the cognitive states of the individual 
simultaneously.  
We can see the use of the representational states at work in the 
illustrations provided earlier. Amy shifted from an embodied 
representation of a desired action to an instructional 
(programmatic) one, using the Avatar’s movements along the way 
to guide her creation/calibration. Sandra began with avatar 

movement she wanted to emulate, moved to searching for its 
programmatic representation, and then by moving back and forth 
between modifications on the programmatic representation and 
the Avatar’s movement, achieved her goal and better understood 
aspects of programming. In this way, code-sharing, or code-
borrowing and code-modification, in combination with graphical 
testing of the modifications, is an opportunity for representational 
transition that can result in learning. 
Another instance of problem-solving that we saw at least once in 
each group illustrates how gaps in incomplete representations 
come to light when compared to other representations, and are 
opportunities for learning that in turn, elaborate incomplete 
representations. Programming the avatar requires that, to string or 
loop together borrowed program code into a realistic Avatar 
movement, the Avatar move back to a neutral position between 
transitions. Users tended to miss this requirement. These users 
would program the Avatar to execute what they thought was the 
next step in an action sequence, failing to realize that the start for 
the new action began at the finish point of the previous action, and 
that the Avatar (and its supporting code) did not “know” to 
resume a neutral stance on its own. This ended up producing 
contortions of the Avatar impossible for a real human body, which 
was puzzling (though also amusing) to users. It was at this point 
that a major insight was often made about the programmatic 
representation: that the program required more discrete and lower-
level instructions than non-programmers realized.  

Illustration 4: Discovering the representation gap  
The following except shows Group B (Session 3) making this 
cognitive move towards a better understanding of what the 
programmatic representation required to produce the desired 
Avatar movement. 

Jorge: "Something, something didn't work." 
Mali: "I think you need to put in there for him to reset.” 
Jorge ignores the comment and changes the 
syntax of the loop heʼs testing, thinking that may 
have something to do with the strange result.  
Jorge: "He didn't do strange things (before)… 
and maybe he won't now."  He runs his script 
again. 
Mali: "No, he totally will, because he needs to go 
back to the normal position." 
Jorge: "What do you mean?" 

 

Mali: "Normal standing position, because he's doing all these 
motions from that, like, already in that pose." 
Jorge: "…Ooohhh." 

Participants sometimes mapped the need-to-return-to-neutral 
discovery back to real 3D movement by enacting what the same 
move would require by the human body, and in so doing, we 
speculate, also fleshed out an impoverished representational state 
for human movement (which is so embodied that we do not 
normally parse it to finer granularities of movement). Mali and 
Jorge summed this up in the final debrief while talking about a 
video game: 
Jorge: "It makes a lot more sense now. Why they [computers] are 
so limited." 
Mali: "In the first Sims game if you take the ladder off the 
swimming pool, they won't get out. They'll drown. It's ridiculous... 
Jorge: "If you take out an important function, either he doesn't 
move at all, or you know... (making a motion to contort his body 



as in Illustration 3)... it makes more sense now." 

5.2 A Gateway to Computational Thinking 
These comments by Jorge and Mali, part of a larger conversation 
about how the two better understand now why the games they 
play behave as they do, indicate progress toward achieving 
“computational thinking,” a skill that Wing believes has growing 
importance in today’s world [17]. Other participants showed 
growth in computational thinking when realizing—because of the 
multiple representational states that they were able to work with in 
this environment—that looped actions have to return to the 
starting state between iterations, how to use heuristics to 
determine rotation planes, how to break complex human actions 
into precise components, etc. 
Many of these breakthroughs in computational thinking related 
directly to manipulating the Avatar in unconcealed 3D. In many 
ways, our findings validate the early Alice design decisions to 
remove the demand for mathematical understanding of 3D [6]. 
The time spent dealing with these complexities was considerable, 
but does this consumption constitute a cognitive tax and 
negatively impact our overall goal of enabling novices to 
program? Or does it in fact fit within that goal? Though there is 
more work to do in answering these questions, based on this 
research we feel that the time spent understanding 3D movement 
represented simultaneous advancement toward programmatic 
understanding, and that the two worked in tandem, where actions 
taken upon the system of representations were inter-relational—
epistemic—in nature [13].  

6. FUTURE WORK 
One future direction for the 3DAPS system is to embed the 
system within an existing online social network. Again, one 
strong piece of rationale for that design decision is the 
motivational component. Another justification is that such a move 
might broaden participation by bringing the end-user 
programming to a wider audience. However, this also opens up 
another connection between programmer and Avatar: a 
connection of identity. Future work will explore that connection, 
as well as the motivational impacts and pathways to learning in a 
socially-networked Avatar programming environment. 

7. CONCLUSION 
The 3DAPS system tested here and the larger social networked 
version that will eventually subsume it do not overtly “teach” 
programming and computational thinking. Instead, the hope is that 
such environments can provide motivation for and access to 
learning. In an end-user environment without a tutorial or a 
teacher, the information required for learning must be embedded 
in the system. This research shows how interaction and transition 
from coded representational states to graphically enacted motions, 
resulting from code-sharing and modification, can lead to 
programmatic learning. It also show how a 3D Avatar 
programming system can leverage existing, embodied knowledge 
to unravel less familiar knowledge—that of programmatic 
instruction—with 3D movement as language of translation 
between the representations.  
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