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Abstract

We present the Ailment Topic Aspect Model
(ATAM), a new topic model for Twitter that
associates symptoms, treatments and general
words with diseases (ailments). We train
ATAM on a new collection of 1.6 million
tweets discussing numerous health related
topics. ATAM isolates more coherent ail-
ments, such as influenza, infections, obesity,
as compared to standard topic models. Fur-
thermore, ATAM matches influenza tracking
results produced by Google Flu Trends and
previous influenza specialized Twitter models
compared with government public health data.

1 Twitter and Public Health

Public health researchers dedicate considerable re-
sources to population surveillance, which requires
clinical encounters with health professionals. We
propose a low cost alternative source for track-
ing public health trends: Twitter. Several studies
have considered using Twitter for tracking various
trends, including news tracking (Lerman and Ghosh,
2010; Petrović et al., 2010), earthquake monitoring
(Sakaki et al., 2010), sentiment (Barbosa and Feng,
2010), and political opinions (Tumasjan et al., 2010;
O’Connor et al., 2010). Similarly, tweets mention
health related topics, such as “i got fever 102.5 i got
flu i got sore eyes my throat hurts taking tylenol”.
This tweet indicates that the user has an ailment
(flu), the associated symptoms (fever, etc.) and treat-
ments (tylenol). Health self-reporting across mil-
lions of users can provide extensive real time infor-
mation about population health.

In this work, we introduce a new method for ex-
tracting general public health information from mil-
lions of health related tweets. Previous work in this
area has focused specifically on influenza, evaluat-
ing influenza surveillance (Lampos and Cristianini,
2010; Culotta, 2010b), analyzing tweets from the
H1N1 pandemic (Quincey and Kostkova, 2010), and
combining prediction markets and Twitter to predict
H1N1 (Ritterman et al., 2009). These results all
arise from supervised models built for specific ap-
plications (e.g. monitoring the flu.)

We present a more general approach that discov-
ers many different ailments and learns symptom and
treatment associations from tweets. Our first contri-
bution is to create a data set of 1.6 million health
related tweets (beyond just influenza.) To create
structured information from these data, we develop
a new topic model that organizes health terms into
ailments, including associated symptoms and treat-
ments. Our model uses explicit knowledge of symp-
toms and treatments to separate out coherent ailment
groups from more general topics. We show that our
model 1) discovers a larger number of more coher-
ent ailments than LDA, 2) produces more detailed
ailment information (symptoms/treatments) and 3)
tracks disease rates consistent with published gov-
ernment statistics (influenza surveillance) despite
the lack of supervised influenza training data.

2 A Twitter Health Corpus

We start with a collection of over 2 billion tweets
from May 2009 to October 2010 (O’Connor et al.,
2010). We first identify which of these messages
contain health information. A first high recall key-



word filter used a list of 20,000 keyphrases related
to illnesses/diseases, symptoms, and treatments. 1

We removed retweets (marked with the “RT” tag)
and tweets containing URLs; they were almost al-
ways false positives( e.g., news articles about the flu,
rather than messages about a user’s health.) The re-
sulting set contained 11.7 million tweets.

Keyword filtering is insufficient since health key-
words can be used in many contexts, e.g., “I’m sick
of this” and “justin beber ur so cool and i have
beber fever” (Culotta, 2010b). Instead, we obtain
training data for a supervised classifier using Me-
chanical Turk (MTurk) (Callison-Burch and Dredze,
2010).We created a 5,128 tweet corpus labeled as re-
lated or unrelated to health. Turkers labeled tweets
as:

• SICK: the message indicated that the user was
sick with an acute illness (e.g., cold, flu).

• HEALTH: the message made general comments
about the user or someone else’s health (e.g.,
chronic conditions, lifestyle, diet).

Turkers also labeled messages as being UNRELATED

to health, NOT ENGLISH, or AMBIGUOUS. Mes-
sages that were not about a particular person’s health
(e.g., news updates about the swine flu, advertise-
ments for diet pills) were labeled as unrelated. We
inserted gold labeled examples into the HITs to en-
sure that each message received 3 annotations from
high quality turkers. The final label was determined
by majority vote, removing examples where the ma-
jority of annotators were unsure of the best label.
Our annotations differ from previous efforts which
included only flu related tweets (Culotta, 2010b).
The distribution of the labeled data is shown in Ta-
ble 1.

We trained a binary SVM using SVMlight

(Joachims, 1999) with a linear kernel and uni-gram,
bi-gram, and tri-gram word features. SICK and
HEALTH labeled messages were positive (36.1% of
the examples), and UNRELATED and NOT-ENGLISH

(63.9% of the examples) were negative. Tokeniza-
tion treated contiguous blocks of punctuation as sep-
arators, and it helped to include these punctuation

1Lists were scraped from wrongdiagnosis.com/lists/

{symptoms,condsaz,treats}.htm and mtworld.com/tools_resources/

commondrugs.php. We added two important keywords (sick and
doctor) and removed some spurious keywords (e.g., hat).

Label 2/3 3/3
# tweets 5128 2753

SICK 24.4% 8.5%
HEALTH 11.3% 16.6%

UNRELATED 52.6% 58.1%
NOT ENGLISH 10.5% 16.7%

AMBIGUOUS 1.1% 0.1%

Table 1: The distribution of labels in our annotated data.
The first column refers to tweets where the label is agreed
on by two of the three annotators, while the second col-
umn requires agreement by all three annotators.

blocks as word tokens, rather than stripping them
out. Hashtags and usernames were removed.

We favor a tagger with high precision over recall,
which still yielded a large set of messages. We tuned
the SVM slack parameter and prediction threshold
using 10-fold cross validation to obtain a classifier
with 90.4% precision and 32.0% recall. Applying
this classifier to the 11.7 million messages produced
a corpus of 1.63 million health related tweets.

3 ATAM: A Model for Ailments in Twitter

We seek a model that can discover a range of health
topics that are discussed in Twitter, not just a sin-
gle disease. We turn to probabilistic topic models,
such as latent Dirichlet allocation (LDA) (Blei et al.,
2003): generative models which associate word to-
kens with latent topics and discover latent structure
in the data. Each document has a multinomial mix-
ture over hidden topics, and each topic is defined
by a multinomial distribution over words. Applying
posterior inference over the model parameters given
text typically yields topics where each topic’s prob-
ability mass is assigned to words which frequently
co-occur and have strong semantic relatedness.

Initial experiments with LDA produced some top-
ics related to diseases, but most did not clearly in-
dicate specific ailments. For example, many topics
contained surgery terms, but it was not clear if these
surgeries are associated with specific illnesses like
physical injuries or cancer. In addition to topics, we
require a model cognizant of the implicit structure
of diseases. We develop a structured model that uses
lists of symptoms and treatments to uncover diseases
(ailments), such as flu, allergies, or cancer. An ail-



ment contains both general words, as well as spe-
cific symptoms and treatments. Additionally, stan-
dard topics capture general terms unrelated to spe-
cific ailments.

For each health tweet, there is a latent ailment
a drawn from a multinomial parameterized by η.
Each ailment a indexes a distribution over words
φa. Building on the idea behind the Topic Aspect
Model (TAM) (Paul and Girju, 2010), a’s distri-
bution over words has three aspects, where an as-
pect y corresponds to a symptom (1), treatment (2)
or a general word (0). The result is that each a
indexes three multinomial distributions over words
given by φa,y for y ∈ {0, 1, 2}. We assume symp-
toms and treatments are given by our web-scraped
keyphrase lists described in section 2 (y is observed
according to the presence of the phrase in our lists)
since our goal is not to learn new symptoms or treat-
ments – our lists are already extensive – but to learn
symptom-treatment structures for ailments.2 Our
lists are phrases, while our model generates tokens.
If a phrase appears in a list, we set the y value for
each of the phrase’s tokens, otherwise y = 0.

Not all word tokens fit into this symptom-
treatment structure, because even when talking
about ailments, users may use non-ailment vocabu-
lary words (e.g. “home” and “watching” in the tweet
“home with a fever watching TV.”) Our model needs
to account for “watching TV.” Therefore, we create
a set of Z topics, where each message contains a
distribution θ over topics. As in LDA, these topic
distributions are drawn from a Dirichlet distribution
parameterized by αa (each ailment has its own α
vector to allow the model to make potential associ-
ations between the ailments and the various topics).
To determine if a word is generated from an ailment
dependent distribution φa,y or a non-ailment topic z,
we include a switching variable x ∈ {0, 1}, sam-
pled from a Binomial distribution parameterized by
π, sampled on a per message basis from a Beta dis-
tribution parameterized by γ0, γ1. Having this set
of non-ailment topics (i.e. topics that have only one
multinomial of general words rather than three gen-
eral/symptom/treatment aspects) is an addition over
the original TAM structure. This idea is similar to

2Making y unobserved would force the model to discover
treatments and symptoms, which we found unnecessary given
the large available lists but could consider in future work.
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• Set the background switching binomial λ
• Draw an ailment distribution η ∼ Dir(σ)
• Draw word multinomials φ ∼ Dir(β) for the topic, ail-

ment, and background distributions
• For each message 1 ≤ m ≤ D:
• Draw a switching distribution π ∼ Beta(γ0, γ1)
• Draw an ailment a ∼ Mult(η)
• Draw a topic distribution θ ∼ Dir(αa)
• For each word wi ∈ Nm

• Draw aspect yi ∈ {0, 1, 2} (observed)
• Draw background switcher ` ∈ {0, 1} ∼ Bi(λ)
• If ` == 0:
• Draw wi ∼ Mult(φB,y) (a background)

• Else:
• Draw xi ∈ {0, 1} ∼ Bi(π)
• If xi == 0: (draw word from topic z)
• Draw topic zi ∼ Mult(θ)
• Draw wi ∼ Mult(φz)

• Else: (draw word from ailment a aspect y)
• Draw wi ∼ Mult(φa,y)

Figure 1: The graphical model and generative process.

that of the Twitter conversation+topic model (Ritter
et al., 2010) where words in a message can depend
either on a LDA-style topic model or a message-
specific conversation act, though the structure is dif-
ferent.

Finally, we include background distributions for
common words, with a different distribution for each
aspect. The switching variable ` (drawn from a Bi-
nomial parameterized by λ) determines if a word
comes from the background or not. We call our
model the Ailment Topic Aspect Model (ATAM,
pronounced Atom). The graphical model and gener-
ative story are shown in Figure 1.

3.1 Inference
Parameter learning (posterior inference) can be car-
ried out straightforwardly with Gibbs sampling. On



each sampling iteration, new values of the random
variables are sampled from a distribution condi-
tioned on the current values of all other variables.
As per the LDA framework, we can derive a col-
lapsed Gibbs sampler by marginalizing the multino-
mials out of the sampling equations, requiring us to
only sample the variables a, z, x and ` (Griffiths and
Steyvers, 2004). We follow Ritter et al. (2010) and
alternately sample the document-level variable a for
a message and the token-level variables (z, x and `).
The sampling probabilities for z, x and ` are simi-
lar to the topic aspect model (Paul and Girju, 2010)
and LDA, except that y is observed in our model and
need not be sampled. We sample a according to:

p(am|a−m,w,y,x, `) (1)

∝ p(am|a−m)

Nm∏
n

p(wm,n|a,w−(m,n),y,x, `)

For each token in the message we sample the values
for the variables from the distributions given by:

p(` = 0|am,w,x, `, λ, β) ∝ λp(wi|w−i, `−i = 0)
(2)

p(` = 1, x = 0, z = k|am,w,y,x, `, α, γ, λ, β)
∝ (1− λ)p(xi = 0|w−i,x−i, γ)p(zi = k|z−i, αam)

p(wi|zi,w−i, `−i = 1,x−i = 0, β) (3)

p(` = 1, x = 1|am,w,y,x, `, γ, λ, β)
∝ (1− λ)p(xi = 1|w−i,x−i, γ)

p(wi|a,w−i,y−i`−i = 1,x−i = 1, β) (4)

In these equations, the global index i denotes the
token (m,n). We also need to infer the αa vec-
tors. To do this, we use a stochastic EM algorithm
in which we update α after each sampling iteration
based on the current variable assignments. We up-
date this according to the fixed-point iteration algo-
rithm given by Wallach (2006). Our model can eas-
ily be extended to a non-parametric model by using
a Dirichlet Process prior for p(am|a−m).

Other hyperparameters were set manually:
γ0=1.0, γ1=0.1 which gives a prior expectation
that non-ailment topic words are more likely to
appear in a tweet than ailment-specific words, and
β = 0.01 and σ = 100.0 for the distributions over

words and over ailments. The background switch-
ing Bernoulli is a fixed, user-defined distribution
controlling the noise level – if we set this so that
words have a high probability of coming from the
background distribution, then they will only end up
in a topic or ailment distribution if the pattern is
very strong. Our initial observations suggest that
tuning this parameter toward noise reduction is
especially important for the symptom and treatment
distributions for each ailment, where the most
common words like “headache” and “surgery” will
end up dominating every ailment, just as common
words like “the” dominate a standard topic model
without stop word removal or term weighting. We
set λ = 0.8 (the probability that the word comes
from the background). In all of our experiments, we
ran for 8000 iterations with Z = 15 and A = 20.

4 Evaluation

In addition to ATAM, we trained an LDA model,
augmented with a background topic (Chemudugunta
et al., 2006) with the same probability as used by
ATAM (0.8), for 5000 iterations with Z = 35 (the
same number of clusters as our ATAM parameteri-
zation (Z+A)), and α = β = 0.01. Three annotators
each labeled the resulting LDA topics and ATAM
ailments with either an ailment name or as “non-
ailment” and we then obtained consensus as to the
best label for each topic/ailment. Figure 3 shows 7
of the 15 ailments discovered by ATAM and labeled
as ailments by annotators.3

We then evaluated model output through two
MTurk experiments.4 First, we measured agreement
of turkers on labeling clusters (ailments/topics). We
showed the top 8 words, 5 ailments and 5 treat-
ments for a cluster.5 We then showed three ran-
domly sorted ailment names (one correct and two
randomly chosen) as well as a “other” and “junk”
option. 80 turkers provided annotations. ATAM dis-
covered more ailments as measured by the number
of ailments agreed to by two thirds of the annota-
tors; 14 unique ATAM ailments versus 10 for LDA.

3The other eight ailment clusters were: upset stomach, flu,
common cold, emergencies, infections, surgery, cancer, and
skin problems.

4Experiments included gold HITs for quality control.
5We obtained symptoms/treatments for LDA topics by

pulling out words that appeared in our keyphrase lists.



Allergies Insomnia Obesity Injuries Respiratory Dental Aches/Pains
General allergies sleep blood knee throat ow body

nose asleep weight leg stop teeth need
eyes fell eat right better tooth neck

allergy awake healthy ankle voice wisdom hurts
allergic hours fat shoulder hurts dentist head

Symptoms sneezing insomnia pressure pain cough pain aches
coughing fall weight sore coughing toothache pain

cold burning loss arthritis cold sore sore
nose pain blood limping sneezing infection muscle
runny falling high neck sneeze tooth aching

Treatments medicine sleeping diet surgery medicine braces massage
benadryl pills exercise brace antibiotics pain exercise
claritin caffeine dieting crutches codeine relief massages
zyrtec tylenol insulin physical vitamin muscle bath
drops pill exercising therapy tylenol surgery hot

Figure 2: Example output of the most likely words for ailments from the Ailment Topic Aspect Model. Ailment titles
result from manual annotation of model output.

Still really sick. ER on Friday for asthma and bronchitis, strong antibiotics over wknd- back to Dr today. No work for the weary today!
came home early today, doctor says i have strep throat :(

Figure 3: Health related tweets labeled by ATAM as relating to the infections ailment. Underlined words are symp-
toms, italics are treatments, and bold are general ailment words. We also color code some words generated by the
same non-ailment topics, where grey is the background topic.

Additionally, ATAM produced more identifiable ail-
ments; 45% of turkers agreed with our gold LDA
labels versus 70% for ATAM.

We next sought to evaluate which model produced
more coherent ailment clusters. Using our labels,
we paired ATAM and LDA clusters that represented
the same ailment (e.g., both were labeled as flu.)
We then displayed each ailment as before, but now
side by side (randomly permuting which appeared
on which side) with the ailment name (e.g. flu).
67 turkers were asked to select the list of words
(including symptoms/treatments) that best described
the given ailment, or to indicate a tie otherwise.
ATAM was favored over LDA in 11 out of 18 com-
parisons with an average of 55% of the votes (me-
dian 64%). These experiments show that ATAM
finds more unique ailments with higher coherence.

4.1 Syndromic Surveillance

One mission of the US Centers for Disease Con-
trol and Prevention (CDC) is syndromic surveil-

lance: tracking disease rates in the population. The
CDC publishes weekly influenza statistics under
FluView.6 While these statistics take considerable
resources to produce, recent work has demonstrated
that Web data and Twitter may be effective alterna-
tives. Google Flu Trends (Ginsberg et al., 2008)
tracks the rate of influenza using query logs on a
daily basis, up to 7 to 10 days faster than CDC’s
FluView (Carneiro and Mylonakis, 2009). Similar
results have been reported for several other types
of query logs (Valdivia et al., 2010; Polgreen et al.,
2008; Hulth et al., 2009; Johnson et al., 2004; Pelat
et al., 2009). Lampos and Cristianini (2010) are able
to learn a Twitter flu rate producing a 0.97 corre-
lation with the UK’s Health Protection Agency in-
fluenza infection rates for the second half of 2009.
Culotta (2010a) performed a similar analysis against
CDC data (correlation 0.95 for September 2009
to May 2010). While these approaches explicitly
model flu rates using regression against government

6
http://www.cdc.gov/flu/weekly/



data, ATAM discovers ailments, including the flu.
Can our general approach discover ailments that cor-
relate with government data?

We computed the number of tweets per week as-
signed to ATAM’s flu ailment, normalizing by the
total number of tweets in the entire corpus for that
week (August 2009 to May 2010).7 The Pearson
correlation coefficient between the flu frequencies
in our data and the CDC data was 0.934, close
to the previously reported methods specializing in
influenza. For comparison, Google’s Flu Trends
(Google, 2011) computed from search query logs
for the same time period yielded a nearly identical
correlation of 0.932 with the CDC data.

5 Conclusion

We have demonstrated that public health informa-
tion can be extracted from Twitter. We created a
corpus of 5,128 messages labeled for relevance to
health and produced a high precision labeling of
1.63 million English messages. Our Ailment Topic
Aspect Model learns to group symptoms and treat-
ments into latent ailments, as well as grouping re-
maining words into health related topics. We have
shown that our model discovers meaningful ailment
descriptions as well as ailments that can be used for
syndromic surveillance.

We plan to incorporate richer models of Twitter
tailored to specific problems, for example, by in-
cluding temporal and geospatial dynamics to track
diseases across a population. Public health informa-
tion can be correlated with user location (Eisenstein
et al., 2010), age and gender (Rao et al., 2010). Fur-
thermore, by making the symptom/treatment aspect
variable y partially observed, we could learn new
symptoms or treatments, which may be of particular
interest, such as if users have developed new home
remedies. This could be coupled with a model for
tagging diseases and symptoms.
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