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Figure 1: We measure perceptual differences across data visualizations in virtual reality (left), augmented reality (middle) and
desktop environments (right). We found that people’s abilities to accurately interpret data using different visualization designs
varies across modalities, offering empirically grounded insight into creating effective visualizations for these displays.

ABSTRACT

Immersive Analytics (IA) uses immersive virtual and augmented
reality displays for data visualization and visual analytics. Designers
rely on studies of how accurately people interpret data in different
visualizations to make effective visualization choices. However,
these studies focus on data analysis in traditional desktop environ-
ments. We lack empirical grounding for how to best visualize data in
immersive environments. This study explores how people interpret
data visualizations across different display types by measuring how
quickly and accurately people conduct three analysis tasks over five
visual channels: color, size, height, orientation, and depth. We iden-
tify key quantitative differences in performance and user behavior,
indicating that stereo viewing resolves some of the challenges of
visualizations in 3D space. We also find that while AR displays
encourage increased navigation, they decrease performance with
color-based visualizations. Our results provide guidelines on how to
tailor visualizations to different displays in order to better leverage
the affordances of IA modalities.

Index Terms: Human-centered computing—Visualization—
Empirical studies in visualization; Human-centered computing—
Human computer interaction (HCI)—Interaction paradigms—Mixed
/ augmented reality; Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality

1 INTRODUCTION

Immersive Analytics (IA) leverages immersive AR and VR technolo-
gies to support data analysis. IA relies heavily on data visualizations
rendered in a 3D space. However, guidance for creating effective
visualizations comes from studies on desktop displays. IA tech-
nologies offer new perceptual affordances like stereo viewing and
embodied navigation that may change what it means to effectively
visualize data. For example, while three-dimensional depth cues
make visualizations harder to read on desktops [54], stereoscopic
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viewing may alleviate these challenges and make depth a viable
channel to encode data. Marriott et al. posit that improved displays,
the intuitive use of the third dimension, and the freedom to work
beyond the monitor offer unique opportunities for data visualiza-
tion in IA [32]. While prior efforts discuss benefits of AR and VR
for data visualization, we have little empirical evidence for how to
effectively design visualizations for immersive displays.

To address this limitation, we measure how different visualiza-
tions support effective data analysis across three display modalities:
a desktop monitor, a virtual reality head-mounted display (VRHMD)
and an augmented reality head-mounted display (ARHMD; Fig.
1). We anticipate that the perceptual and interactive affordances
of these displays will affect how well people estimate values from
data visualizations. Conventional desktops allow users to leverage a
familiar interaction paradigm (mouse and keyboard), but their lack
of stereoscopic rendering hinders depth perceptions. VR and AR
provide users with stereo viewing and embodied navigation, but are
relatively unfamiliar and require users to physically move around
to navigate the visualization. AR additionally blends visualizations
with real-world environments, adding additional referents that may
alter data perception. While prior studies point to differences in user
experience across these modalities [3, 5, 13], we instead seek to pro-
vide preliminary insight into how we might tailor our visualizations
to best leverage different display modalities.

We provide insight into effective visualization design by evalu-
ating how performance varies across modalities for different visual
channels used to encode data. Inspired by classical graphical per-
ception studies [8], we examine data visualized using color, size,
depth, and orientation in scatterplots and height in barcharts. These
channels represent a variety of designs used to encode data in multi-
variate visualizations and allow us to probe perceptual differences
between channels. For example, blending physical and virtual ob-
jects in AR may shift color perceptions by changing the contrast
between datapoints and their backgrounds, but stereoscopic viewing
may make depth encodings more effective. We measure these effects
using objective (accuracy and time-to-completion) and subjective
(perceived confidence and ease of use) metrics.

We consider display type, encoding channel, analysis task, and
dimensionality to provide initial guidelines for how effective visual-
ization design varies across display modalities, offering preliminary
steps toward generalizable models for immersive visualization de-
sign. We use these findings to rank channel effectiveness for differ-



ent display types—comparable to Cleveland and McGill’s canonical
rankings for 2D visualizations [8]. We aim to provide visualiza-
tion designers with empirically grounded guidelines for effective
immersive visualizations that supplement designer intuitions in IA.

2 RELATED WORK

Studies in data visualization measure how effectively different visu-
alizations designs communicate patterns in data. IA tools can utilize
these findings to inform system design. We draw on prior results in
immersive analytics and graphical perception to inform our study.

2.1 Immersive Analytics
IA has received considerable attention with the increasing capabili-
ties and availability of HMDs. Prior work has explored the use of IA
in domains such as urban planning [1], computational fluid dynam-
ics [30], economics [5], Internet of Things (IoT) applications [17],
shopping [12], and maritime analytics [47]. These systems aim to
empower users by enabling analysts to display and interact with
data in novel ways beyond traditional 2D displays. For example,
surgeons can use hands-free visualizations for teaching, enabling
side-by-side comparison and remote presence [42, 51].

In creating IA systems, designers identify aspects of immersive
displays that could benefit data visualization. For example, while
problematic in 2D [54], the use of depth and increased display space
may allow users to better understand complicated visualizations.
Past systems provide anecdotal examples of these benefits in tasks
requiring sensemaking across data tables [5, 9, 47], spatiotemporal
data [14,39], and high-dimensional data [11,37]. However, empirical
studies show that depth perception issues can be exacerbated in
AR and VR, finding that people underestimate the depth of virtual
objects [10, 25]. Visualizations could leverage different visual cues
to account for these limitations in practice [31].

IA tools can also combine modalities to take advantage of trade-
offs in different display types for visual analytics. For example,
AR allows for the situated display of semantically relevant data
by blending data with the physical contexts it describes. Recent
efforts combine AR with 2D displays to leverage the strengths of
each display modality [48, 52] but rely on intuition to determine
when and how to use each. This intuition is used to transition
between visualization types depending on context within a single
display type [24, 56] or across display types at different levels of
immersion [23, 40, 50, 52]. We look to extend these guidelines with
a formal empirical analysis of design trade-offs across display types.

2.2 Empirical Studies of IA
The increased prevalence of IA has inspired a number of studies
exploring the affordances of IA in different scenarios. For example,
Laha et al. identify how aspects of VR fidelity, such as stereo
vision and field of regard, impact performance for five different
tasks in volumetric visualization [29]. Bach et al. investigated
AR for exploratory analysis tasks in scatterplots such as distance
estimation and cluster identification [3] but found limited benefits to
AR for visualization viewing and interaction. Fafard et al. evaluated
a similar set of tasks in Fishtank VR (FTVR), but found notable
benefits of stereo vision and motion parallax for point clouds in
spherical displays [13]. Kraus et al. found that participants more
accurately identified clusters in VR scatterplots than on desktop
scatterplot matricies and that the structure of VR visualizations
influenced how people navigate data [27]. While these works provide
insight into the types of tasks quantitatively suited to IA, they offer
little insight into how to design for these platforms. We instead seek
to evaluate visualization design for AR, VR and desktop interfaces,
focusing on visualization perception across visual channels.

Prior studies of IA systems consider both perception and novel
interaction techniques to complement new visualization systems. For
example, Bach et al. evaluate not only use of AR for visualization

tasks, but also the effectiveness of tangible interactions in aiding
with these tasks [3]. Other works have explored how vibrotactile
feedback [36] and spatial audio [22] can enhance performance with
common visualization tasks. These works provide interesting insight
into how we can effectively utilize the multimodal input and output
in immersive display, but novel UIs make it challenging to isolate
the perceptual benefits of immersive displays from the effects of
interaction techniques. As interaction is a key component of IA
systems, we consider effects of canonical interaction paradigms—
embodied navigation in AR/VR or mouse and keyboard navigation
on a 2D display—in measuring design differences across modalities.

2.3 Graphical Perception
The ways we visualize data determine how well people can extract
different statistics about that data. For example, people can compare
the position of two datapoints more accurately than their size [8].
Graphical perception experiments measure how well different visual-
izations allow people to extract statistical information from data. We
can use the results of these studies to ground recommendations for
visualizations that support specific tasks [2,41] and even to automate
visualization design [34]. However, the overwhelming majority of
graphical perception studies focus on traditional 2D monitors. We
have little empirical insight into how to best represent data in IA.

Graphical perception studies typically focus on a particular en-
coding channel (e.g., color [43, 49]), a data type (e.g., time se-
ries [2, 19, 21]), or a visualization type (e.g., pie charts [26, 45]).
These studies can generate a variety of insights into visualization de-
sign, ranging from A/B comparisons [41] to ranked lists of channels
or designs [8] to quantitative perceptual models [38]. For exam-
ple, Cleveland & McGill [8] measured how accurately people could
compare two values using different visual channels. They created
a ranked list of channels from most to least accurate which has
long served as foundational guidance for effective visualization de-
sign. We adapt these ideas to understand how well channels support
effective analysis across display modalities.

We ground our investigation in scatterplots. Scatterplots are
among the most common visualization types used in graphical per-
ception studies. They are both familiar to most users and allow
designers to freely manipulate most visual channels, including each
datapoint’s size, color, and shape. Studies have used scatterplots to
study how people estimate different statistics like means [18], corre-
lation [20, 38], and similarity [35]. Other studies use scatterplots to
measure how well people estimate values over specific channels like
color [49] and shape [46]. Our study builds on this work to explore
how people perceive different kinds of information across channels
and modalities.

Results from graphical perception may not readily translate to
other display factors. For example, AR visualizations are over-
laid onto the physical environment where the colors and sizes of
real-world objects may alter data perceptions [16]. McIntire &
Liggett [33] discuss how stereoscopic displays could alleviate limita-
tions of 3D visualizations by drawing on AR and VR studies in other
contexts. Prior studies have evaluated visualization techniques like
space-time cubes [15] and data highlighting [28] in immersive envi-
ronments, but these studies emphasize techniques rather than specific
design components. Closely related to our work, Kraus et al. [27]
found scatterplot cluster detection to be more accurate in VR than
on a desktop. We build on these results by measuring performance
on an expanded set of tasks and modalities and exploring channels
for encoding data beyond position. Our results extend traditional
graphical perception approaches to provide empirically grounded
guidance for effectively visualizing data on different platforms.

3 METHODS

We conducted a 3 (display type) × 5 (encoding channel) × 3
(task) mixed factors graphical perception study to measure how
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Figure 2: We tested analysis performance for eight visualization designs. Participants saw each visualization design twice per task: once to
identify the greatest value, greatest area or direction of increasing trend and once to identify the lowest value, lowest area or decreasing trend.

well people perceive visualized data in IA. Our study tested vi-
sualizations on three different displays: desktop, VR using an
HTC Vive, and passthrough AR using an HTC Vive and Zed
mini (§3.2). We measured performance for visualizations with
three and four data dimensions. Participants used these visual-
izations to estimate values over five encoding channels—color,
size, depth, height, and orientation—building on canonical chan-
nels from graphical perception [8] (§3.1, Fig. 3). To better re-
flect the complexity found in real visualizations, we embedded
the tested channels in 2D and 3D scatterplots and asked partici-
pants to conduct three statistical tasks—extrema detection, trend
identification, and mean estimation—to measure how well each
channel supports different analysis goals (§3.3). Encoding channel
and task were within-subjects factors; display type was a between-
subjects factor. Our study infrastructure is available at https:
//github.com/CU-VisuaLab/ThreeDPerceptionStudy.

We developed four hypotheses about objective and subjective
performance. We crafted these hypotheses based on theoretical
investigations [32, 33], prior studies [3, 27], and prior experience.
H1: Participants will have more difficulty disentangling depth and
size on the desktop. When the camera vector is parallel to the axis, a
small but near datapoint can appear the same as a large but distant
one due to perspective projection. This confound can be rectified by
changing viewpoint; however, we anticipate that stereo viewing can
help participants more readily disentangle depth and size.
H2: AR and VR will perform comparably for all channels except
color. Color in AR will be worse than in VR. AR and VR both
provide immersive stereo experiences. However, AR renders data
in the visual context of the real world, creating background color
variations that may degrade color perceptions.
H3: Performance with height, depth, and visualizations with four
data dimensions will correlate with scene navigation. Looking at a
visualization from multiple angles will help reveal potentially hidden
points in visualizations leveraging the X, Y and Z axes as points may
otherwise be occluded by other points. We expect this correlation
not to hold in cases where a single viewpoint will reveal all data
values (e.g., color, size, or orientation on 2D scatterplots).
H4: Participants will prefer embodied navigation to the mouse and
keyboard interface. Mouse-and-keyboard interaction is familiar, but
can be cumbersome for navigating 3D spaces. Immersive interac-
tions create more natural means for navigating data [3, 5].

3.1 Stimuli
Participants saw data with either three or four data dimensions. In
these visualizations, one dimension mapped to the target visual chan-
nel and the remaining channels mapped to positions in a scatterplot.
We use scatterplots as they are familiar to most users, allow us to

readily control aggregate statistics (trends and means) over different
regions of the data, and enable us to test different visual channels
in an ecologically valid way without significant interference with
other data dimensions. Data along each dimension ranged from
0 to 565, a range selected in piloting based on task and difficulty
to show reasonable relative differences and variance within each
visualization. Full details of data generation are provided in §3.3.

Visualizations with three data dimensions map 100 datapoints to
positions on the X and Y axes (or the X and Z axes for height) and
a third channel corresponding to our target channel. Visualizations
with four data dimensions encode 200 datapoints on the X, Y, and Z
axes and a fourth target channel (Fig. 3). Visualizations were created
as prefabricated elements from DxR [44] in Unity, with sampling
densities determined in piloting, and rendered at 232mm × 232mm
screenspace to avoid performance biases due to size differences
across modalities. Each visualization has a target question rendered
above it and a legend to its right.

We tested five encoding channels: size, color, orientation depth,
and height. We selected these channels based on their use in canoni-
cal studies [8] and as their performance may be impacted by stere-
oviewing (size, height, depth), projection (size, depth, orientation),
or integration with real-world objects (color, height, size).

We encoded size using the edge length of cubes ranging from
4mm to 10mm in screen space when each visualization initially
loads. For size visualizations, we attached fixed-size box colliders to
each cube to retain consistent selection bounds. Color was mapped
to the default sequential color scale in DxR (ranging from light
grey (254,224,210) to red (222,45,38) interpolated in HCL). For
orientation (comparable to direction in Cleveland & McGill [8]),
we encoded data values as rotation about the Z axis where vertical
bars represent 0 and horizontal bars represent the highest value.
This mapping was determined in piloting. Depth encoded data
as a position along the 232mm Z-axis. Height encoded data as
the heights of bars originating at points along the XZ-plane and
ranging in height by 96mm. We used height in the context of bar
charts as, like scatterplots, they position values at the XY position
of datapoints, but avoid confounds with vertical position and align
values on a common plane. We did not test depth or height with
four dimensional visualizations as these channels conflict with the Z
position.

For all conditions except color, we used an ambient gradient light
from light gray (RGB (242, 242, 242)) to mid-gray (RGB (127, 127,
127)) and back to light gray in the Unity tri-light ambient lighting
model. We supplemented this light with a camera-sourced light gray
point light (RGB (187, 187, 187)), halfway between pure white and
the mid-gray desktop and VR background (§3.2) with an intensity of
75%. In piloting, we found these lighting settings uniformly lit the



data to properly show shading on 3D datapoints. The low intensity
point light aligned with the participant’s gaze removed shadows
from the front of the datapoints without emphasizing points directly
in front of the camera. For color visualizations, we used only a flat
white light since gradient ambient lights non-uniformly lit points in
ways that interfered with their perceived color.

3.2 Display Types
To explore the effects of display type on visualization performance,
we built a common study infrastructure in Unity using DxR [44].
Where possible, we designed comparable interactions across the
desktop, AR and VR to avoid confounds from different UIs. Each
modality used industry standard navigation and selection techniques
(mouse and keyboard for desktop and embodied navigation and gaze
and controller-based selection for AR and VR). All visualizations
rendered using a computer with an Intel i7 processor, 8 GB RAM,
and an NVidia GeForce GTX 1070. The study space consisted
of a 4m × 2.7m room with one overhead light. To mimic real-
world conditions, the room contained objects typical to an office
environment: a desk with the desktop computer, a whiteboard, a TV,
and a frosted glass wall (Fig. 1). To maximize the navigation space,
all furnishings were wall-mounted or against the glass wall.

3.2.1 Desktop
The desktop condition rendered full-screen visualizations on a
mid-gray (L∗ = 50) background displayed on a 28-inch Samsung
U28E590D 4K monitor. We constrained the camera to the same
110◦ field of view as the HTC Vive. Participants navigated the
scene with a mouse and keyboard using default Unity key mappings.
Left/Right/Up/Down arrow keys allowed participants to pan along
the XY plane, and the scroll wheel moved along the Z axis.

Participants used a Logitech Anywhere MX mouse with contin-
uous scroll to more closely replicate continuous embodied HMD
navigation. Participants rotated the camera by moving the mouse
while pressing the right mouse button. Dragging the mouse in the de-
sired direction adjusted the camera’s rotation about the X and Y axes.
We used the Windows default cursor and left click for selection.

3.2.2 Virtual Reality
VR visualizations on the HTC Vive rendered using the same mid-
gray background (L∗ = 50). As the Vive is a fully immersive
VRHMD, we did not use the same mouse-and-keyboard paradigm as
on the desktop. We instead implemented data navigation and selec-
tion based on findings from prior literature and industry standards.

Modern HMDs afford embodied data navigation: participants
navigate scatterplots by physically moving around the scene. How-
ever, selection with HMDs is less standardized. Chatterjee et al.
found a gaze-tracked cursor with gestural confirmation comparable
to a mouse [7]. We built on these results to enable data selection
using a gaze-based cursor and the HTC Vive remote. Similar to the
Microsoft HoloLens, a small black cylindrical cursor was rendered
directly in the middle of the participant’s field of view. Participants
“clicked” to select an object by pulling the back trigger of the Vive
remote, mirroring the standard selection mapping for the Vive.

3.2.3 Augmented Reality
The AR interface mirrors the VR condition except it utilized a Zed
mini camera attached to the front of the Vive for passthrough AR.
Visualizations rendered over streamed images of the real world
rather than a fixed grey background. As opposed to the see-through
displays like the Microsoft HoloLens, the Zed mini augments entire
field of view provided by the Zed with virtual elements, leading to a
comparable field of view between the AR and VR conditions. Using
a pass-through camera also allowed visualizations render with the
same color fidelity as in VR. Due to bandwidth limitations, the Zed
mini could only feed image data at 720p resolution in order to retain

a reasonable framerate (60 fps) and field of view (100.7◦ diagonally).
Given the size and simplicity of marks in our scatterplots, we do not
anticipate this resolution had a significant impact on our results.

3.3 Tasks & Datasets
Participants completed three tasks–extrema identification, trend de-
tection, and mean estimation—to evaluate how well different designs
support a variety of statistical judgments (Fig. 2). These tasks re-
quire both identifying relevant information from individual values
and combining magnitudes or changes across multiple values [2].
For symmetry, half of the stimuli required participants to select the
largest value or mean or increasing trend, and the other half elicit
the smallest value or mean or decreasing trend.

Our visualizations label the target channel as temperature data to
contextualize these tasks within familiar measures. We generated
synthetic data from Gaussian distributions to regulate the intended
effects and task difficulty. Scatterplot point positions were sampled
from uniform random distributions along X, Y and Z (where needed)
with no overlapping points. Difficulties were calibrated in piloting,
targeting an overall accuracy of 70% to avoid ceiling and floor ef-
fects. We generated 24 datasets per task × dimension and randomly
mapped them to visualizations for each participant.

Extrema Tasks: Extrema tasks asked participants to identify the
maximum or minimum value within a dataset. For this task, temper-
ature values were drawn from within the lowest 82nd percentile of a
Gaussian distribution (µ = 10,σ = 1). The extrema point reflected
values between the 83rd and 91st percentile of the data. We also
generated datasets with mirrored conditions for tasks identifying the
lowest value: all but one of the temperatures lie in the upper 82%
of the distribution, and extrema data points were between the 9th
and 17th percentile. We confirmed post-hoc that the target values
corresponded to the largest/smallest value after data sampling.

Participants were instructed to select a datapoint using the mouse-
or gaze-based cursor, which removed all data but the selected data-
point and loaded a confirmation menu asking them to confirm their
selection. Selecting “No” (a mistaken selection) returned partici-
pants to the task while selecting “Yes” initiated the next stimuli.

Quadrant Means: Our second task asked participants to identify
the quadrant of the visualization with the highest or lowest mean
temperature. The X, Y, and (for visualizations with four data dimen-
sions) Z axes were halved, yielding 4 quadrants for three dimension
datasets and 8 octants for four dimensions. Datasets were generated
using four Gaussian distributions where each quadrant has a differ-
ent mean (σ = 1). The differences between the highest and next
highest quadrant means ranged from 6% to 12% of the value range.

To avoid having to navigate the visualization to select a quadrant,
participants selected any point within the target quadrant to provide
an answer. Selection then removed all data except the selected
quadrant while participants confirmed their selection. In training,
we instructed participants not to use the interface to isolate individual
quadrants, but instead only to verify their selection.

Trend Detection: Trend tasks asked participants which direc-
tion the data is either increasing or decreasing. For visualizations
with three data dimensions, they chose one of eight directions (two
parallel to each axis and four towards the corners). For four data
dimensions, they chose one of six (two parallel to each axis).

X, Y and Z positions were first randomly generated. Temperature
values were then drawn from a Gaussian distribution (µ = 50, σ =
15) and multiplied by an offset function:

f (x,y,α) = α × (dxx+dxy) (1)
where x and y correspond to the point’s x and y, dx,dy,ε[−1,0,1]

control the trend direction, and α is a scaling constant controlling the
trend strength. As an example for a trend in the +y direction, each
temperature datapoint is a drawn from the Gaussian distribution and
increased by α times the y position (dx = 0,dy = 1) to create a trend
toward +y. We varied α between 0.5 and 0.1 based on piloting. For
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Figure 3: Participants completed extrema, mean, and trend tasks. For
mean and extrema, users selected a point to isolated either it (top)
or its corresponding quadrant (middle). For trend tasks, selecting a
trend arrow isolated that arrow (bottom). Participants then confirmed
that the selected point, quadrant, or arrow was the intended target.

all trend fits, f (x,y,α) was constrained such that the line of fit ran
through the origin. Trend direction was verified by linear regression.

Participants indicated trend direction using arrows in the periph-
ery of each scatterplot (Fig. 2). Participants were instructed to select
the arrow that best represents the direction in which datapoints are
either increasing or decreasing. Selecting an arrow loads a confirma-
tion menu that allows the participant to confirm the selection.

3.4 Study Design & Procedure

We explored effects of display and channel on data analysis using
a mixed factors design with display type between participants and
all other factors within participants. Each participant completed 48
trials blocked by task with block order counterbalanced between
participants to avoid learning effects and to maximize the number
of trials each participant completed in the session. 24 trials asked
participants to identify a maximum or increasing value and 24 a
minimum or decreasing value.

We recruited 42 participants from the local campus community
(25 Male, 15 Female, 1 Non-binary, 1 DNR). Participant ages ranged
from 18-35 (µ=22.3, σ=4.64). Participants reported relatively low
familiarity with AR (38% of participants reporting prior familiarity
with the technology), moderate familiarity with VR (62%), and
low familiarity with 3D modeling tools (33%) and game engines
(33%). Data more than 70% of the way to the opposite answer was
excluded for task misunderstanding (84 of 2,016 total trials). As
was the intention in piloting, we achieved an overall binary accuracy
(right/wrong, agnostic of magnitude) of 71%.

The study consisted of three phases: (1) consent, (2) task tri-
als, and (3) demographics and compensation. Each block of the
formal study contained three phases: (1) training, (2) testing, and
(3) subjective questionnaire. After explaining the study premise
and acquiring informed consent, participants were outfitted with a
headset or seated at the desktop. They were instructed in the use of
the modality and then began the first study block.

In each block, participants performed eight training tasks—one
for each combination of channel and dimensionality. Participants

acclimated to the eight visualizations they would see, navigation in
the environment, and the interactions required to make selections,
asking for clarifications when needed. Participants had to correctly
answer each training trial before moving to the next training trial.

Participants completed 16 test trials in each task block. These
trials consisted of two stimuli per channel × data dimensionality,
with combinations randomly ordered. For each stimuli, participants
indicated their answer through the mechanisms described in §3.3
and confirmed before moving to the next trial. To avoid potential
confounds from switching between designs and highest/lowest value
tasks, trials were separated by a five second screen displaying the
encoding channel, dimensionality, and task for the next trial.

After completing all testing trials in a block, participants re-
sponded to 10 Likert-scale questions on a 2D monitor. In these
questions, participants rated their agreement (1-7) for the following
statements: “I found using Channel made it easy to identify differ-
ences in data values.” and “I felt confident in my selections when
using Channel.” This questionnaire provided subjective feedback as
well as a break between task blocks to mitigate fatigue effects.

After the study, we administered a questionnaire with Likert
questions about overall experiences, open-ended feedback, and a
demographics survey (materials: https://osf.io/sj8v2/). We
then compensated participants with a $10 Amazon gift card.

3.5 Measures

We measured performance through both objective (error and time-to-
completion) and subjective (ease of use and confidence) measures.
We computed the percent error, normalized as a percentage of the
possible value range for each task. We use relative error rather than
absolute correctness to account for not only the ability to identify
the correct answer for a given task but the precision with which
people can estimate that answer. For extrema tasks, error reflected
the difference between selected value and the greatest/smallest value.
For mean tasks, error reflects the difference between the mean of
the selected region and the greatest/smallest mean. For trend, we
computed error as the percentage difference in slope between the best
fit line and the selected direction. We measured time to completion
as the time elapsed between when the visualization loaded and when
the participant confirmed a selected datapoint, region or direction.

To understand the influence of different display modalities and
visualization designs on data navigation, we additionally measured
two elements of participant interaction: positional and rotational
displacement. We collected subjective preference of different visual
channels through Likert scale questions after completing all of trials
for each task. We then asked overall subjective questions about the
interface and subjective perceptions of the visualizations at the end
of the study. A final questionnaire also included a demographics
survey and space for open-ended feedback.

4 RESULTS

We evaluated objective results using two Multivariate Analysis of
Variance (MANOVA) tests with error rate and time-to-completion as
dependent variables: a 3 (display type) × 3 (task) × 5 (channel) full
factorial MANOVA for the three variable visualizations and a 3 (dis-
play type) × 3 (task) × 3 (channel) MANOVA for the four variable
visualizations. Considering task as a factor in our analysis allows
us to account for variance due to task while also measuring overall
performance differences. We divide our statistics into two tests as
we could not test all encoding channels in each dimension. However,
we provide descriptive statistics for relevant differences (means and
95% confidence intervals) to allow the reader to compare across
three and four data dimensions. We used Tukey’s Honest Significant
Difference Test (HSD) for general post-hoc comparisons and Least
Square Means Contrast tests (α = .05) for pairwise comparisons
of specific channel-display combinations. We used MANOVAs to
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Figure 4: We compared objective performance through error and time to completion measures across displays for channel-dimension
combinations. * indicates significance with p < .05 and *** indicates p < .001 (top). Error bars denote 95% confidence intervals. The line
graphs (bottom) show how rankings of channel-dimension pairs differ for Desktop, AR and VR displays. Bold lines between displays indicate
significant differences across displays (p < .05).

explore navigation strategies across display types and scale construc-
tion to analyze subjective feedback from Likert-scale questions.

To focus our discussion on relevant results, we report significant
first order effects and interaction effects relevant to our hypotheses.
The full statistical analysis of all interaction effects and anonymized
data are available as supplemental material at https://https:
//osf.io/sj8v2/ and are summarized in Fig. 4.

4.1 Objective Results

Task: We found a significant effect of task on error in visualizations
with three data dimensions (F(2,1119) = 32.12, p < .0001): partic-
ipants were significantly less accurate at identifying trends (6.73%±
1.17) than extrema (3.36%± .71) or quadrants (2.15%± .53). Task
had a different effect on time-to-completion (TTC) for visualizations
with three data dimensions (F(2,1119) = 3.39, p = .0041). Unlike
with error, mean tasks were significantly faster (18.07s±1.07) than
extrema tasks (µ = 24.44s±1.34). We additionally found effects
of task for four data dimensions (F(2,659) = 13.42, p < .0001).
Participants again took longer to complete extrema tasks (µ =
32.06s±2.62) than mean tasks (µ = 27.05s±2.13), but also took
longer finding extrema than estimating trends (µ = 24.09s±2.02).

Channel: Channel impacted overall error in visualizations with
both three and four data dimensions. For three dimensions, error rate
was significantly higher for orientation (6.65%± 1.40) than with
any other channel (F(4,1119) = 8.67, p < .0001). In visualizations
with four data dimensions, participants were significantly more
accurate with color (3.33%±1.29) than with size (6.00%±1.5) and
orientation (8.8%± .020; F(2,659) = 11.90, p < .0001).

We found similar effects for completion time (F3D(4,1160) =
14.54, p < .0001; F4D(2,700) = 18.16, p < .0001). For both three

and four data dimensions, color (µ3D = 17.35s ± 1.42, µ4D =
22.81s ± 2.14) was significantly faster than orientation (µ3D =
21.34s±1.55; µ4D = 32.65s±2.52). With three dimensions, color
(µ = 17.36 ± 1.42) and size (µ = 17.39s ± 1.31) were also sig-
nificantly faster than depth (µ = 24.59± 2.08) and height (µ =
22.40±1.9), whereas with four dimensions, color was significantly
faster than size (µ = 27.92±2.12).

Channel × Display: We found no significant effects of display
on error or completion time but found interaction effects between
display and channel for both measures. In visualizations using
color (F3D(1,40) = 3.98, p = .046; F4D(1,40) = 3.86, p = .050),
AR displays ( µ3D = 5.53%±1.86; µ4D = 5.53%±3.09) resulted
in significantly higher error than desktop (µ3D = 2.89% ± 1.52;
µ4D = 2.51%±1.95) and than VR for visualizations with four data
dimensions (2.05%± 1.47), likely from the color variation intro-
duced by real-world objects in participants’ field of view. We found
a significant effect of display on error for size in visualizations with
four data dimensions (F(1,40) = 11.16, p = .0009): Desktop dis-
plays (9.67%±3.41) induced more error than VR (3.27%±1.52)
or AR (µ = 5.13%±2.26) displays. We anticipate that it was more
difficult to disentangle size changes in data from size changes due
to perspective projection without stereo viewing. Viewing in an
immersive space may reduce interference between size and depth,
resulting in performance closer to that of size alone (Fig. 4, top left).
We found no significant effects of display on error for size with three
data dimensions or for orientation, height or depth.

Display had a significant effect on TTC for depth encodings
(F(2,39) = 8.90, p = .003), where desktop displays (27.73s±3.35)
resulted in significantly greater time to completion compared to VR
(22.53s±3.87) and AR (23.51s±2.60). Display also had a signifi-



cant effect on TTC for height encodings (F(1,40) = 6.77, p = .009),
where desktop displays (25.43s±4.13) required significantly more
time than AR (19.40s± 2.20) or VR (µ = 22.43± 3.30). These
findings echo observations from error: depth, height, and size likely
benefit from the added stereo cues of immersive HMDs. As partici-
pants often noted that they reoriented the visualization to estimate
height and depth on the desktop, these results may also stem from
participants being less efficient at desktop navigation.

Display had a significant effect on TTC for color encodings
with three data dimension visualizations (F(1,40) = 3.85, p =
.05), where AR (19.62s ± 2.84) took significantly longer than
VR (µ = 17.50± 2.42) and desktop (µ = 14.95± 2.06) displays.
With four data dimensions, color differed marginally across dis-
plays (F(1,40) = 3.39, p = .066), being marginally slower in AR
(25.94s±4.13) than desktop (20.46s±3.15) and VR (22.12s±3.85)
displays, again pointing to potential effects of background contrast.
We also observed a marginally significant effect of display on time
to completion for size encodings in four data dimension visualiza-
tions (F(1,40) = 2.95, p = .086): desktop displays (30.66s±4.05)
required marginally more time than AR (27.22s± 3.54) and VR
(25.93s± 3.51) displays. As with error, this difference suggests
that stereo viewing may help disentangle size from depth. We did
not see significant effects of display on TTC for orientation or size
visualizations with three data dimensions.

4.2 Navigation
We hypothesized that data navigation would also vary across dis-
plays and visualization designs. To quantitatively evaluate these
differences, we conducted a MANOVA to test the effect of display
on position and rotation. We again used Tukey’s HSD for post-hoc
comparisons. More difficult stimuli generally required more time
and more interaction to answer. To decouple effects of prolonged
interaction due to visualization design, we normalized total distance
traveled by dividing by TTC. We also include tests run on the raw
positional and rotational distance traveled in our web supplement,
though the results are similar to those from the normalized measures.

Both positional (F(2,39) = 9.35, p < .0001) and rotational
(F(2,39) = 321.00, p< .0001) distance traveled varied significantly
across display types (Fig. 5). For position, AR displays (.131m/s±
.0055) resulted in significantly more positional motion than VR
(.119m/s± .0051) or desktop (.114m/s± .0067) displays. For ro-
tational distance traveled, AR displays (23.87deg/s± .67) resulted
in significantly more rotation than VR displays (21.21deg/s± .68).
Desktop had the least overall rotation (11.82deg/s± .74). We hy-
pothesize that the significantly higher motion in AR stems from
participants feeling more comfortable moving around in an envi-
ronment where they have nearly full situational awareness. The
low motion in desktop displays may also suggest difficulty in using
mouse-and-keyboard interactions to navigate a 3D space.

We compared overall motion interactions between AR, VR, and
desktop as a function of block order. AR and VR displays saw no
significant differences in positional or rotational navigation between
blocks, whereas block order did significantly influence positional
navigation on desktop displays (F(1,40) = 12.29, p = .0005). Par-
ticipants panned the camera significantly less during the first task
block (.103m/s± .010) than in second (.125m/s± .011) or third
(.127m/s± .0124) task blocks. This finding indicates that at least
some of the effects of display type may be due to difficulties in
interaction; however, the effect size and differences between AR and
VR indicate that AR encourages more data navigation.

4.3 Subjective Feedback
We analyzed subjective feedback by first performing scale construc-
tion on the 10 Likert scale questions completed per task block.
A factor rotation over the six questions for each channel (two
per channel per task block) yielded significantly correlated scales
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Figure 5: Analyzing position and rotation across displays, we found
that participants navigated the data more in AR than in VR or on
the desktop. “**” indicates p < .01 and “****” indicates p < .0001.
Error bars denote 95% confidence intervals.

for each channel, with Crobach’s α ≥ 0.8: color (α = .80), size
(α = .85), height (α = .85), depth (α = .81), and orientation
(α = .83). We constructed a scale for each channel combining
responses across questions. Using a MANOVA to evaluate the ef-
fect of display type on the constructed scales with Tukey’s HSD
again used for post-hoc comparisons, we found that participants pre-
ferred to use color (F(2,39) = 6.632, p = .004) on desktop displays
(5.48± .57) over AR (4.12± .63). We found the opposite effect for
height (F(2,39) = 3.59, p = .037): people preferred height in AR
(6.19± .47) to height on desktop displays (5.21± .69). These results
likely indicate unique affordances of AR combining data with the
real world: while the color of real world objects complicates color
estimation, people can use size contrast to better compare heights.

We conducted an additional factor rotation with the five Likert
scale questions from the final questionnaire. These questions mea-
sured perceived location of the data relative to the viewer and to other
data points and the perceived intuitiveness, utility, and task relation
of the display navigation. The rotation yielded significantly corre-
lated scales across questions of perceived location (α = .81) and
across navigation utility and task relation (α = .80). We analyzed
display performance for each scale independently using ANOVAs.

Participants reported significantly lower perceived spatial com-
prehension of the data on desktop displays (4.21 ± .74) than in
AR (5.57± .66) or VR displays (5.42± .84; F(2,39) =, p = .015).
We found only a marginal effect on navigation (F(1,39) = 3.58,
p = .066): participants found navigation marginally more useful
in AR (6.00± .42) than on desktop (5.32± .63) displays. These
results collectively suggest that people feel better able to spatialize
and navigate data in immersive environments.

5 DISCUSSION

We conducted a mixed factors study measuring graphical perception
across desktop, AR, and VR displays. We summarize significant
objective and subjective metrics that indicate key design decisions
for IA. These design decisions begin to enumerate the space of
effective IA design and illustrate the need for deeper empirical
understanding into the trade-offs of visualizations across displays.

Size in 4D: Estimating size with four data dimensions is signif-
icantly more challenging on desktop displays than in VR or AR,
partially supporting H1. Visualizations using depth to encode values
typically use perspective projection to communicate depth. This
projection means that size and depth are intertwined, as was reflected
in the poor performance of size on desktops. However, as hypothe-
sized in prior work [32, 33], depth became more effective and size
easier to distinguish from depth in AR and VR. While traditional
visualization guidelines strongly advocate against 3D visualizations
using depth, stereoscopic viewing may alleviate many concerns with



these designs, echoing Kraus et al.’s findings for scatterplot cluster
detection [27]. Future work should more deeply explore how AR
and VR might shift recommendations about 3D visualization design.

Color in AR: Color was significantly harder to use in AR than
in other modalities (H2). Participants noted that “color in AR was
particularly difficult due to interference from the background color
of the room.” (P30). The red hues in our color scale did not conflict
with visible objects in the experimental space. However, future work
should consider how to intelligently select visualization colors for
IA. One strategy is to draw on techniques for colorblind accessibility
[55] to ensure more robust color design. This result also suggests
that VR applications should consider their choice of backgrounds.
For example, skyboxes and terrains may cause contrast effects when
navigating data that could degrade visualization effectiveness.

AR vs. VR: Aside from color visualizations, objective perfor-
mance was comparable between AR and VR, supporting H2. We
observed some participants use their bodies or objects around them
as referents to help with size, height, and depth estimation in AR. For
example, participants pointed “with [their] fingers at an individual
point to keep track of it while [they] looked elsewhere” (P15). Some
attempted similar strategies in VR despite the lack of embodiment,
holding a hand out to “act out touching the data points [they] wanted
to remember and compare for later” (P1). These strategies suggest
that people may leverage embodiment to interpret IA visualizations.
Systems could use these observations to enhance data interaction.

Differences in Engagement & Interaction: Participants were sig-
nificantly slower at analyzing depth and height on the desktop than
in immersive HMDs. This effect correlated with the amount of inter-
action (H3). Height required moving across viewpoints to mitigate
occlusion; however, many participants navigated to the top or sides
of a visualization to maximize depth comparisons despite this motion
introducing occlusion. Desktop participants consciously reflected
on their interaction strategies in open-ended responses, citing the
importance of “spinning all the way around the 3-D graphs” (P14)
and “turning to the different sides of the 3D tasks” (P29). These
strategies mitigated potential sources of error by shifting depth esti-
mates to position estimates, but required additional time and energy
compared to AR and VR. In assessing the design of the mouse and
keyboard interface against the AR/VR interface, we note the lack
of other conditions where the desktop condition was significantly
slower. This provides some indication that differences in interaction
did not strongly affect time to completion results.

Subjective measures also reflect these interaction differences:
participants were more confident using depth and height in AR and
VR, reflecting engagement and performance dependencies found in
Bach et al. [3]. Designers may wish to prioritize depth and height
differently across modalities: on the desktop, people must navigate
the visualization to isolate these channels but can more readily make
these comparisons in AR and VR with less navigation.

Differences in interaction strategies extended beyond depth and
height: participants engaged with data differently in all three modal-
ities, partially supporting H4. For example, participants became
more efficient with the mouse and keyboard over time, moving more
on the first task than subsequent tasks. However, we did not see
these differences in AR or VR, indicating that embodied navigation
was more intuitive. Our subjective metrics support this hypothesis:
people found navigating in AR qualitatively easier than the desktop.

Analyzing interaction data revealed additional differences in data
engagement in AR and VR. People moved significantly more in AR
than VR. We anticipate these differences reflect increased situational
awareness and embodiment offered by AR: people can see the space
they are moving in. This comfort may suggest different uses of phys-
ical space for configuring visualization systems in AR. Put simply,
people may make better use of space outside of their field of view in
AR to create constellations of visualizations that they can navigate
more fluidly and comfortably than in VR, essentially turning the

world into an analytical canvas. Future work in exploratory design
and empirical studies could better inform these possibilities.

5.1 Limitations & Future Work

Our study represents a preliminary exploration of graphical percep-
tion for IA. With continued exploration of graphical perception in
IA, the research community can build models for generating suitable
visualizations depending on display, channel and dimensionality, as
has been done for 2D visualizations [38]. Toward that end, future
work could extend our approach to more display types or mixed
display configurations. Popular see-through ARHMDs offer less
color fidelity (e.g., inability to project black and issues of opacity in
strong physical lighting) and smaller fields of view, but users can di-
rectly see the immediate environment, which our results suggest may
influence data interpretation and engagement. Studies should also
extend to other tasks, such as cluster identification to directly con-
nect to results from prior studies [22,36,37], to other data types (e.g.,
streaming or time series data), to an increased number of data points,
and to other encoding channels (e.g., motion) and visualization types
(e.g., pie charts or line graphs).

Orientation, though noted as a useful cue in prior studies [8], led
to low performance across all tasks. While we anticipate that this
reflects the use of the encoding channel in the context of a data
visualization rather than as isolated value pairs, better understanding
the limitations of orientation as a channel is key future work. Many
immersive visualizations utilize rotation or orientation [14, 29, 57].
Future studies should evaluate differences in orientation across tasks
targeted by these systems and about multiple rotation axes.

We only tested one color encoding, the default DXR red ramp
[44], thus not considering the breadth of colors that could be used in
visualizations. Testing different color ramps and strategies to help
users identify subtle color differences (e.g., edge enhancement or
recoloring) could increase the viability of AR color encodings [55].

We focused only on channels with minimal interference with
position. Understanding how our results generalize across other
combinations of channels (e.g., their separability) across displays
could extend prior models for multivariate visualizations in 2D
[46] and inform new visualization designs. To draw principled
conclusions about visualization design, we mirrored stimuli across
displays as closely as the technologies allowed. In doing so, we
omitted several features that may make tasks easier in immersive
environments. Participants mentioned features such as “a middle
vertex [for orientation] where you’re looking with faint lines going
out in all directions” (P12) or being able “to position the data plot
rather than moving around” (P0). In IA, gestural and raycast-based
interactions [6, 53] and drop shadows [10] can help infer depth and
distance. Immersive displays can also provide multimodal feedback
using spatial audio [22], voice commands [4], or vibration [36] for
data interaction. Future work should take a broader view on how
interaction may support efficient and accurate IA.

6 CONCLUSION

While interest in IA is growing, we still have limited guidance
for creating effective IA visualizations. We conducted a graphical
perception study to measure data estimation performance across vi-
sualization designs and display modalities. These findings offer new
insight into the utility of depth, color, and other cues for immersive
displays. We also provide preliminary insight into differences in nav-
igation strategies across displays that could inform new interaction
designs. We see this work as preliminary steps towards empirically
grounded guidelines for effective immersive analytics design.
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