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Linear Classification

Most classifiers we’ve seen use linear
functions to separate classes:
• Perceptron
• Logistic regression
• Support vector machines

(unless kernelized)



Linear Classification
If the data are not 
linearly separable, a linear 
classification cannot 
perfectly distinguish the 
two classes.

In many datasets that are 
not linearly separable, a 
linear classifier will still be 
“good enough” and classify 
most instances correctly.



Linear Classification
If the data are not 
linearly separable, a linear 
classification cannot 
perfectly distinguish the 
two classes.

In some datasets, there is 
no way to learn a linear 
classifier that works well.



Linear Classification
Aside:
In datasets like this, it might 
still be possible to find a 
boundary that isolates one 
class, even if the classes 
are mixed on the other side 
of the boundary.

This would yield a classifier 
with decent precision on 
that class, despite having 
poor overall accuracy.



Nonlinear Classification
Nonlinear functions can be used to separate 
instances that are not linearly separable.

We’ve seen two nonlinear classifiers:
• k-nearest-neighbors (kNN)
• Kernel SVM
• Kernel SVMs are still implicitly learning a linear 

separator in a higher dimensional space, but the 
separator is nonlinear in the original feature space.



Nonlinear Classification

kNN would probably work 
well for classifying these 
instances.?

?

?



Nonlinear Classification

kNN would probably work 
well for classifying these 
instances.

A Gaussian/RBF kernel 
SVM could also learn a 
boundary that looks 
something like this.
(not exact; just an illustration)



Nonlinear Classification
Both kNN and kernel methods use the concept 
of distance/similarity to training instances

Next, we’ll see two nonlinear classifiers that 
make predictions based on features instead of 
distance/similarity:
• Decision tree
• Multilayer perceptron
• A basic type of neural network



Decision Trees

What color is the cat in this photo?

Calico Orange Tabby Tuxedo



Decision Trees

Pattern?

Contains Color?

Stripes

Contains Color?

Patches

Gray Tabby Orange Tabby Tuxedo Calico

Gray Orange Black Orange



Decision Trees

# of Colors?

Contains Color?

1 2

Gray Tabby Orange Tabby

Tuxedo Calico

Gray Orange

3



Decision Trees
Decision tree classifiers are structured as a tree, 
where:
• nodes are features
• edges are feature values

• If the values are numeric, an edge usually corresponds 
to a range of values (e.g., x < 2.5)

• leaves are classes

To classify an instance:
Start at the root of the tree, and follow the branches 
based on the feature values in that instance. The 
final node is the final prediction.



Decision Trees
We won’t cover how to learn a decision tree in 
detail in this class (see book for more detail)

General idea:
1. Pick the feature that best distinguishes classes
• If you group the instances based on their value for that 

feature, some classes should become more likely
• The distribution of classes should have low entropy

(high entropy means the classes are evenly distributed)
2. Recursively repeat for each group of instances
3. When all instances in a group have the same 

label, set that class as the final node.



Decision Trees
Decision trees can easily overfit.
Without doing anything extra, they will literally 
memorize training data!
x1 x2 x3
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x1

x2 x2

x3 x3 x3 x3

A tree can encode all possible 
combinations of feature values.



Decision Trees
Two common techniques to avoid overfitting:
• Restrict the maximum depth of the tree
• Restrict the minimum number of instances that 

must be remaining before splitting further

If you stop creating a deeper tree before all 
instances at that node belong to the same class, 
use the majority class within that group as the final 
class for the leaf node.



Decision Trees
One reason decision trees are popular is 
because the algorithm is relatively easy to 
understand, and the classifiers are relatively 
interpretable.
• That is, it is possible to see how a classifier makes 

a decision.
• This stops being true if your decision tree becomes 

large; trees of depth 3 or less are easiest to 
visualize.





Decision Trees
Decision trees are powerful because they 
automatically use conjunctions of features 
(e.g., Pattern=“striped” AND Color=“Orange”)

This gives context to the feature values.
• In a decision tree, Color=“Orange” can lead to 

a different prediction depend on the value of 
the Pattern feature.
• In a linear classifier, only one weight can be 

given to Color=“Orange”; it can’t be associated 
with different classes in different contexts



Decision Trees
Decision trees naturally handle multiclass
classification without making any modifications

Decision trees can also be used for regression
instead of classification
• Common implementation: final prediction is the 

average value of all instances at the leaf



Random Forests
Random forests are a type of ensemble learning 
with decision trees (a forest is a set of trees)

We’ll revisit this later in the semester, but it’s 
useful to know that random forests:
• are one of the most successful types of ensemble 

learning
• avoid overfitting better than individual decision trees



Neural Networks
Recall from the book that perceptron was inspired 
by the way neurons work:
• a perceptron “fires” only if the inputs sum above a 

threshold (that is, a perceptron outputs a positive 
label if the score is above the threshold; negative 
otherwise)

Also recall that a perceptron is also called an 
artificial neuron.



Neural Networks
An artificial neural network is a collection of 
artificial neurons that interact with each other
• The outputs of some are used as inputs for others

A multilayer perceptron is one type of neural 
network which combines multiple perceptrons
• Multiple layers of perceptrons, where each layer’s 

output “feeds” into the next layer as input
• Called a feed-forward network



Multilayer Perceptron

Let’s start with a cartoon about how a 
multilayer perceptron (MLP) works 
conceptually.



Multilayer Perceptron

Contains Gray?

Contains Orange?

Contains Black?

# of Colors

Color Diffusion

…

Tabby?

Train a perceptron to 
predict if the cat is a tabby



Multilayer Perceptron

Contains Gray?

Contains Orange?

Contains Black?

# of Colors

Color Diffusion

…

Multi-color?

Train another perceptron to 
predict if the cat is bi-color 
or tri-color

Tabby?



Multilayer Perceptron

Contains Gray?

Contains Orange?

Contains Black?

# of Colors

Color Diffusion

…

Ginger colors?

Train another perceptron to 
predict if the cat contains 
orange/red/brown colors

Tabby?

Multi-color?



Multilayer Perceptron

Ginger colors?

Treat the outputs of your 
perceptrons as new features

Tabby?

Multi-color?

Train another perceptron 
on these new features

Color Prediction



Multilayer Perceptron
Contains Gray?

Contains Orange?

Contains Black?

# of Colors

Color Diffusion

…

Ginger colors?

Tabby?

Multi-color? Prediction

Usually you don’t/can’t specify what 
the perceptrons should output to use 
as new features in the next layer.



Multilayer Perceptron
Contains Gray?

Contains Orange?

Contains Black?

# of Colors

Color Diffusion

…

????

????

???? Prediction

Usually you don’t/can’t specify what 
the perceptrons should output to use 
as new features in the next layer.



Multilayer Perceptron
Contains Gray?

Contains Orange?

Contains Black?

# of Colors

Color Diffusion

…

????

????

???? Prediction

Instead, train a network to learn 
something that will be useful for 
prediction.



Multilayer Perceptron
Contains Gray?

Contains Orange?

Contains Black?

# of Colors

Color Diffusion

…

????

????

???? Prediction

Hidden layer

Input layer



Multilayer Perceptron
The input layer is the first set of perceptrons
which output positive/negative based on the 
observed features in your data.

A hidden layer is a set of perceptrons that uses 
the outputs of the previous layer as inputs, 
instead of using the original data.
• There can be multiple hidden layers!
• The final hidden layer is also called the output layer.

Each perceptron in the network is called a unit.



Multilayer Perceptron
Contains Gray?

Contains Orange?

Contains Black?

# of Colors

Color Diffusion

…

????

????

???? Prediction

1 hidden unit

3 input units



Activation Functions
Remember, perceptron defines a score wTx, then 
the score is input into an activation function which 
converts the score into an output:

ϕ(wTx) = 1 if above 0, -1 otherwise

Logistic regression used the logistic function to 
convert the score into an output between 0 and 1:

ϕ(wTx) = 1 / (1 + exp(-wTx))



Activation Functions
Neural networks usually use also use the logistic 
function (or another sigmoid function) as the 
activation function

This is true even in multilayer perceptron
• Potentially confusing terminology:

The “units” in a multilayer perceptron aren’t 
technically perceptrons!

The reason is that calculating the perceptron 
threshold is not differentiable, so can’t calculate 
the gradient for learning.



Multilayer Perceptron
The final classification can be written out in full:

ϕ(w211(ϕ(w11Tx)) + w212(ϕ(w12Tx)) + w213(ϕ(w13Tx)) )

Equivalent to writing:
ϕ(w21

Ty), where y = <ϕ(w11Tx), ϕ(w12Tx), ϕ(w13Tx)>

(above, the dot product has been expanded out)



Multilayer Perceptron
The final classification can be written out in full:

ϕ(w211(ϕ(w11Tx)) + w212(ϕ(w12Tx)) + w213(ϕ(w13Tx)) )
Scores of the three “perceptron” units in the first layer



Multilayer Perceptron
The final classification can be written out in full:

ϕ(w211(ϕ(w11Tx)) + w212(ϕ(w12Tx)) + w213(ϕ(w13Tx)) )

Scores of the three “perceptron” units in the first layer

Outputs of the three “perceptron” units in the first layer 
(passing the three scores through the activation function)



Multilayer Perceptron
The final classification can be written out in full:

ϕ(w211(ϕ(w11Tx)) + w212(ϕ(w12Tx)) + w213(ϕ(w13Tx)) )

Scores of the three “perceptron” units in the first layer

Outputs of the three “perceptron” units in the first layer

Score of the one “perceptron” unit in the second layer
(which uses the three outputs from the last layer as “features”)



Multilayer Perceptron
The final classification can be written out in full:

ϕ(w211(ϕ(w11Tx)) + w212(ϕ(w12Tx)) + w213(ϕ(w13Tx)) )

Scores of the three “perceptron” units in the first layer

Outputs of the three “perceptron” units in the first layer
Score of the one “perceptron” unit in the second layer

Final output (passing the final score through the 
activation function)



Multilayer Perceptron
The final classification can be written out in full:

ϕ(w211(ϕ(w11Tx)) + w212(ϕ(w12Tx)) + w213(ϕ(w13Tx)) )

Can then define a loss function L(w) based on the 
difference between classifications and true labels
• Can minimize with gradient descent (or related methods)

• Algorithm called backpropagation makes gradient calculations 
more efficient

• Loss function is non-convex
• Lots of local minima make it hard to find good solution



Multilayer Perceptron
How many hidden layers should there be? 
How many units should there be in each layer?

You have to specify these when you run the 
algorithm. 
• You can think of these as yet more 
hyperparameters to tune.



Nonlinear Example: XOR
Consider two binary features x1 and x2 and you 
want to learn to output the function, x1 XOR x2.

A linear classifier would not be able to learn this, 
but decision trees and neural networks can.

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0



Nonlinear Example: XOR
A decision tree can simply learn that:
• if x1=0, output 0 if x2=0 and output 1 if x2=1
• if x1=1, output 1 if x2=0 and output 0 if x2=1

x2 x2

0 1 1 0

x1



Nonlinear Example: XOR
We can learn this with a MLP with 2 input units 
and 1 hidden unit.

Input units:
w11 = <0.6, 0.6>, b11 = -1.0
w12 = <1.1, 1.1>, b12 = -1.0

• Unit 1 will only output 1 if both x1=1 and x2=1
• Unit 2 will only output 1 if either x1=1 or x2=1



Nonlinear Example: XOR
Input units:
• Unit 1 will only output 1 if both x1=1 and x2=1
• Unit 2 will only output 1 if either x1=1 or x2=1

Hidden unit:
w2 = <-2.0, 1.1>, b2 = -1.0

• If feature 1 (Unit 1 output) is 1, this will output 0
• If both features (Units 1 and 2) are 0, this will output 0
• If only feature 2 (Unit 2 output) is 1, this will output 1



What Classifier to Use?
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