
Support Vector Machines
INFO-4604, Applied Machine Learning

University of Colorado Boulder

September 27, 2018
Prof. Michael Paul

Today

Two important concepts:
• Margins
• Kernels

Large Margin Classification

Linear Predictions
Perceptron:

f(x) = 1, wTx ≥ 0
-1, wTx < 0

SVM:

f(x) = 1, wTx ≥ 1
-1, wTx ≤ -1

Two different boundaries
for positive vs negative

Large Margin Classification

Large Margin Classification
The margin is the distance between the two
boundaries.

The support vectors are the instances at the
boundaries (when wTx = 1 or -1)
• Or within the boundaries, if not linearly separable

The goal of SVMs is to learn the boundaries to
make the margin as large as possible (while still
correctly classifying the instances)
• maximum margin classification

Large Margin Classification
The size of the margin is: 2 / ||w||
• Recall: ||w|| is the L2 norm of the weight vector
• Smaller weights → larger margin

Learning goal:
• Maximize 2 / ||w||, subject to the constraints that all

instances are correctly classified
• Turn it into minimization problem by taking the

inverse: ½ ||w||
• Can also square the L2 norm (makes the calculus

easier), just like with L2 regularization: ½ ||w||2

Large Margin Classification
The size of the margin is: 2 / ||w||
• Recall: ||w|| is the L2 norm of the weight vector
• Smaller weights → larger margin

Learning goal:
• Minimize:

• Subject to the constraints:

Only possible to satisfy
these constraints if the
instances are linearly
separable!

Large Margin Classification
In the general case, SVM uses this loss function:

Li(w; xi) = 0, yi (wTxi) ≥ 1
- yi (wTxi), otherwise

Same as perceptron,
but yi (wTxi) ≥ 1 instead
of yi (wTxi) ≥ 0

Large Margin Classification
In the general case, SVM uses this loss function:

Li(w; xi) = 0, yi (wTxi) ≥ 1
- yi (wTxi), otherwise

The learning goal of SVMs when the data are not
linearly separable is to minimize:

½ ||w||2 + C L(w)
inverse training
margin loss

SVMs also use L2
regularization
• C is like λ from before,

but larger C→ lower loss

Large Margin Classification
Like perceptron, the SVM function can be
minimized using stochastic (sub)gradient descent
• With sklearn’s SGDClassifier class, SVM can

be implemented by setting loss='hinge’

Other implementations (usually using different
optimization algorithms than SGD)
• Liblinear and LIBSVM (both used by sklearn)
• SVM-light

Large Margins: Summary

Large Margins: Summary
Classifiers with large margins are more likely to
have better generalization, less overfitting
• Hyperparameter C controls the tradeoff between

margin size and classification error

The large margin principle is another justification
for L2 regularization that you saw earlier
• Since the size of the margin is inversely

proportional to the L2 norm of the weight vector

Kernel Trick
It turns out that the optimal solution for w is
equivalent to:

Σi αi xi

So in the loss function and prediction functions, we
can replace wTx with Σiαi xiTx

αi is only nonzero for support vectors
• This summation can therefore skip over all other

instances, making this calculation more efficient.

Combination of each
training instance’s feature
vector, weighted by α

Kernel Trick
In the loss function and prediction functions, we
can replace wTx with Σiαi xiTx

Now this looks similar to weighted nearest
neighbor classification, where the “similarity”
between an instance x and another instance xi is
xiTx and this is additionally weighted by αi

Learning goal is now to learn α instead of w
• How? More complex than before…

Kernel Functions
Loosely, a kernel function is a similarity function
between two instances

General kernel trick:
Replace wTx with Σiαi k(xi, x)

The linear kernel function for an SVM is:
k(xi, xj) = xi

Txj

Kernel Functions
What happens if we define the kernel function in
some other way?

Then it won’t be true that Σiαi k(xi, x) = wTx

But: kernels can be defined so that,
Σiαi k(xi, x) = wTφ(x),

where φ(x) is some other feature representation.

Kernel Functions: Polynomial
A polynomial kernel function is defined as:

k(xi, xj) = (xi
Txj + c)d

If d=2 (quadratic kernel), then it turns out that

Σiαi k(xi, x) = wTφ(x)

where

Kernel Functions: Polynomial
In other words, using a quadratic kernel is
equivalent to using a standard SVM where you’ve
expanded the feature vectors to include:
• Each original feature value (times a constant)
• Each feature value squared
• The product of each pair of feature values (times a

constant)
• This can be especially useful, since it can capture
interactions between features

Without the kernel trick, this large feature set
would be computationally expensive to work with.

Kernel Functions
In general, the kernel trick can create new features
as nonlinear combinations of the old features
• Data that are not linearly separable in the original

feature space might be separable in the new space

Kernel Functions: RBF
The radial basis function (RBF kernel) is:

k(xi, xj) = exp(-γ ||xi – xj||2)

• One of the most popular SVM kernels
• Related to the Gaussian/normal distribution
• Interpretation as expanded feature vector?
• It actually maps to a feature vector with infinitely many

features… so technically equivalent, but impossible to
implement without using the kernel trick.

squared Euclidean distance

Kernel Functions: RBF

From:&http://qingkaikong.blogspot.com/2016/12/machine;learning;8;support;vector.html

http://qingkaikong.blogspot.com/2016/12/machine-learning-8-support-vector.html

Kernel Functions: RBF
The radial basis function (RBF kernel) is:

k(xi, xj) = exp(-γ ||xi – xj||2)

• In addition to C, γ also affects overfitting
• Large γ→ small differences in distance

between xi and xj are magnified
• This will cause the classifier to fit the training data

better, but may do worse on future data

Kernel Functions: RBF

From:&http://qingkaikong.blogspot.com/2016/12/machine;learning;8;support;vector.html

http://qingkaikong.blogspot.com/2016/12/machine-learning-8-support-vector.html

Kernel Methods: Summary (1)
• Kernel SVM is a reformulation of SVM that uses

similarity between instances
• To make a prediction for a new instance, need to

calculate kernel function for the new instance and all
training instances that are the support vectors

• Kernel SVM is equivalent to an SVM with a
expanded feature set
• Sometimes there is an intuitive interpretation of what

the “new” features mean; sometimes not

• Kernel SVM with a linear kernel is equivalent to a
standard SVM

Kernel Methods: Summary (2)
• Kernels can be useful when your data has a

small number of features and/or when the dataset
is not linearly separable
• Some kernels are prone to overfitting
• High degree polynomial; RBF with high scaling

parameter

• Kernel SVM has additional hyperparameters you
have to choose
• Type of kernel
• Parameters of kernel (e.g., d in polynomial, γ in RBF)

Kernel Methods: Summary (3)

Also be aware that:
• Kernel methods not unique to SVM (invented

long before, for perceptron), but popularized by it.
• Lots of other kernel functions not shown here, but

these are the most common.
• Specialized kernels exist for certain types of data

(e.g., biological sequences, syntax trees)

