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Today

Two important concepts:
• Margins
• Kernels



Large Margin Classification



Linear Predictions
Perceptron:

f(x) =     1,   wTx ≥ 0
-1,   wTx < 0

SVM:

f(x) =     1,   wTx ≥ 1
-1,   wTx ≤ -1

Two different boundaries 
for positive vs negative



Large Margin Classification



Large Margin Classification
The margin is the distance between the two 
boundaries.

The support vectors are the instances at the 
boundaries (when wTx = 1 or -1)
• Or within the boundaries, if not linearly separable

The goal of SVMs is to learn the boundaries to 
make the margin as large as possible (while still 
correctly classifying the instances)
• maximum margin classification



Large Margin Classification
The size of the margin is: 2 / ||w||
• Recall: ||w|| is the L2 norm of the weight vector
• Smaller weights → larger margin

Learning goal:
• Maximize 2 / ||w||, subject to the constraints that all 

instances are correctly classified
• Turn it into minimization problem by taking the 

inverse: ½ ||w||
• Can also square the L2 norm (makes the calculus 

easier), just like with L2 regularization: ½ ||w||2



Large Margin Classification
The size of the margin is: 2 / ||w||
• Recall: ||w|| is the L2 norm of the weight vector
• Smaller weights → larger margin

Learning goal:
• Minimize:

• Subject to the constraints:

Only possible to satisfy 
these constraints if the 
instances are linearly 
separable!



Large Margin Classification
In the general case, SVM uses this loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 1
- yi (wTxi), otherwise

Same as perceptron, 
but yi (wTxi) ≥ 1 instead 
of yi (wTxi) ≥ 0



Large Margin Classification
In the general case, SVM uses this loss function:

Li(w; xi) =    0,  yi (wTxi) ≥ 1
- yi (wTxi), otherwise

The learning goal of SVMs when the data are not 
linearly separable is to minimize:

½ ||w||2 + C L(w)
inverse training
margin loss

SVMs also use L2 
regularization
• C is like λ from before, 

but larger C→ lower loss



Large Margin Classification
Like perceptron, the SVM function can be 
minimized using stochastic (sub)gradient descent
• With sklearn’s SGDClassifier class, SVM can 

be implemented by setting loss='hinge’

Other implementations (usually using different 
optimization algorithms than SGD)
• Liblinear and LIBSVM (both used by sklearn)
• SVM-light



Large Margins: Summary



Large Margins: Summary
Classifiers with large margins are more likely to 
have better generalization, less overfitting
• Hyperparameter C controls the tradeoff between 

margin size and classification error

The large margin principle is another justification 
for L2 regularization that you saw earlier
• Since the size of the margin is inversely 

proportional to the L2 norm of the weight vector



Kernel Trick
It turns out that the optimal solution for w is 
equivalent to:

Σi αi xi

So in the loss function and prediction functions, we 
can replace wTx with Σiαi xiTx

αi is only nonzero for support vectors
• This summation can therefore skip over all other 

instances, making this calculation more efficient.

Combination of each 
training instance’s feature 
vector, weighted by α



Kernel Trick
In the loss function and prediction functions, we 
can replace wTx with Σiαi xiTx

Now this looks similar to weighted nearest 
neighbor classification, where the “similarity” 
between an instance x and another instance xi is 
xiTx and this is additionally weighted by αi

Learning goal is now to learn α instead of w
• How? More complex than before…



Kernel Functions
Loosely, a kernel function is a similarity function 
between two instances

General kernel trick:
Replace wTx with Σiαi k(xi, x) 

The linear kernel function for an SVM is:
k(xi, xj) = xi

Txj



Kernel Functions
What happens if we define the kernel function in 
some other way? 

Then it won’t be true that Σiαi k(xi, x) = wTx

But: kernels can be defined so that,
Σiαi k(xi, x) = wTφ(x), 

where φ(x) is some other feature representation.



Kernel Functions: Polynomial
A polynomial kernel function is defined as:

k(xi, xj) = (xi
Txj + c)d

If d=2 (quadratic kernel), then it turns out that

Σiαi k(xi, x) = wTφ(x)

where



Kernel Functions: Polynomial
In other words, using a quadratic kernel is 
equivalent to using a standard SVM where you’ve 
expanded the feature vectors to include:
• Each original feature value (times a constant)
• Each feature value squared
• The product of each pair of feature values (times a 

constant)
• This can be especially useful, since it can capture 
interactions between features

Without the kernel trick, this large feature set 
would be computationally expensive to work with.



Kernel Functions
In general, the kernel trick can create new features 
as nonlinear combinations of the old features
• Data that are not linearly separable in the original 

feature space might be separable in the new space



Kernel Functions: RBF
The radial basis function (RBF kernel) is:

k(xi, xj) = exp(-γ ||xi – xj||2 )

• One of the most popular SVM kernels
• Related to the Gaussian/normal distribution
• Interpretation as expanded feature vector?
• It actually maps to a feature vector with infinitely many 

features… so technically equivalent, but impossible to 
implement without using the kernel trick.

squared Euclidean distance



Kernel Functions: RBF

From:&http://qingkaikong.blogspot.com/2016/12/machine;learning;8;support;vector.html

http://qingkaikong.blogspot.com/2016/12/machine-learning-8-support-vector.html


Kernel Functions: RBF
The radial basis function (RBF kernel) is:

k(xi, xj) = exp(-γ ||xi – xj||2 )

• In addition to C, γ also affects overfitting
• Large γ→ small differences in distance 

between xi and xj are magnified
• This will cause the classifier to fit the training data 

better, but may do worse on future data



Kernel Functions: RBF

From:&http://qingkaikong.blogspot.com/2016/12/machine;learning;8;support;vector.html

http://qingkaikong.blogspot.com/2016/12/machine-learning-8-support-vector.html


Kernel Methods: Summary (1)
• Kernel SVM is a reformulation of SVM that uses 

similarity between instances
• To make a prediction for a new instance, need to 

calculate kernel function for the new instance and all 
training instances that are the support vectors

• Kernel SVM is equivalent to an SVM with a 
expanded feature set
• Sometimes there is an intuitive interpretation of what 

the “new” features mean; sometimes not

• Kernel SVM with a linear kernel is equivalent to a 
standard SVM



Kernel Methods: Summary (2)
• Kernels can be useful when your data has a 

small number of features and/or when the dataset 
is not linearly separable
• Some kernels are prone to overfitting
• High degree polynomial; RBF with high scaling 

parameter

• Kernel SVM has additional hyperparameters you 
have to choose
• Type of kernel
• Parameters of kernel (e.g., d in polynomial, γ in RBF)



Kernel Methods: Summary (3)

Also be aware that:
• Kernel methods not unique to SVM (invented 

long before, for perceptron), but popularized by it.
• Lots of other kernel functions not shown here, but 

these are the most common.
• Specialized kernels exist for certain types of data 

(e.g., biological sequences, syntax trees)


