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Unsupervised Naive Bayes

Last week you saw how Naive Bayes can be
used in semi-supervised or unsupervised settings

» Learn parameters with the EM algorithm

Unsupervised Naive Bayes is considered a type
of topic model when used for text data

 Learns to group documents into different categories,
referred to as “topics”

* Instances are documents: features are words

Today’s focus is text, but ideas can be applied to
other types of data



Topic Models

Topic models are used to find common patterns in
text datasets

« Method of exploratory analysis

* For understanding data rather than prediction
(though sometimes also useful for prediction —
we’ll see at the end of this lecture)

Unsupervised learning means that it can provide
analysis without requiring a lot of input from a user



Topic Models
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Topic Models
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Topic Models
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Unsupervised Naive Bayes

Naive Bayes is not often used as a topic model
« We’'ll learn more common, more complex models
today

 But let’s start by reviewing it, and then build off the
same ideas



Generative Models

When we introduced generative models, we said
that they can also be used to generate data



Generative Models

How would you use Naive Bayes to randomly
generate a document?

First, randomly pick a category, ¥-Z

 Notation convention to use Z for /latent categories in
unsupervised modeling instead of Y (since Y often implies
it is a known value you are trying to predict)

* The category should be randomly sampled according to
the prior distribution, P(Z)



Generative Models

How would you use Naive Bayes to randomly
generate a document?

First, randomly pick a category, Z

Then, randomly pick words
« Sampled according to the distribution, P(W | Z)

These steps are known as the generative process
for this model



Generative Models

How would you use Naive Bayes to randomly
generate a document?

This process won't result in a coherent document

« But, the words in the document are likely to be
semantically/topically related to each other, since
P(W | Z) will give high probability to words that are
common in the particular category



Generative Models

Another perspective on learning:

If you assume that the “generative process” for a
model is how the data was generated, then work
backwards and ask:

« What are the probabilities that most likely would
have generated the data that we observe?

The generative process is almost always overly
simplistic
» But it can still be a way to learn something useful



Generative Models

With unsupervised learning, the same approach

applies

« What are the probabilities that most likely would
have generated the data that we observe?

* If we observe similar patterns across multiple
documents, those documents are likely to have
been generated from the same latent category



Naive Bayes

Let’s first review (unsupervised) Naive Bayes
and Expectation Maximization (EM)



Naive Bayes
Learning probabilities in Naive Bayes:

P(X=x1Y=y) =
# instances with label y where feature | has value x

# instances with label y



Naive Bayes
Learning probabilities in unsupervised Naive Bayes:

P(X=x12=z) =

# instances with category z where feature | has value x

# instances with category z



Naive Bayes
Learning probabilities in unsupervised Naive Bayes:

P(X=x12=z) =
Expected # instances with category z where feature j has value x
Expected # instances with category z

» Using Expectation Maximization (EM)



Expectation Maximization (EM)

The EM algorithm iteratively alternates between
two steps:

1. Expectation step (E-step)

Calculate P(Z=z 1 X) =  P(X | Z=z) P(Z=2)

for every instance 2, P(X| 1 Z=2") P(Z=2’)

\ }
|

These parameters come from
the previous iteration of EM




Expectation Maximization (EM)

The EM algorithm iteratively alternates between
two steps:

2. Maximization step (M-step)

Update the probabilities P(X | Z) and P(2),
replacing the observed counts with the
expected values of the counts

« Equivalent to 2, P(Z=z | X))



Expectation Maximization (EM)

The EM algorithm iteratively alternates between
two steps:

2. Maximization step (M-step)

P(X=x | Z=2) = 2, P(Z=z | X)) I(Xj=X)
% P(Z=z1X)
Y

for each feature j These values come
and each category z from the E-step




Unsupervised Naive Bayes

1. Need to set the number of latent classes

2. Initially define the parameters randomly
« Randomly initialize P(X | Z) and P(Z) for all features
and classes

3. Run the EM algorithm to update P(X | Z) and
P(Z) based on unlabeled data

4. After EM converges, the final estimates of
P(X | Z) and P(Z) can be used for clustering



Unsupervised Naive Bayes

In (unsupervised) Naive Bayes, each document
belongs to one category

 This is a typical assumption for classification
(though it doesn’t have to be — remember multi-

label classification)




Admixture Models

In (unsupervised) Naive Bayes, each document
belongs to one category

 This is a typical assumption for classification
(though it doesn’t have to be — remember multi-
label classification)

A better model might allow documents to contain
multiple latent categories (aka topics)

 Called an admixture of topics



Admixture Models
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Admixture Models

In an admixture model, each document has
different proportions of different topics

« Unsupervised Naive Bayes is considered a
mixture model (the dataset contains a mixture of
topics, but each instance has only one topic)

Probability of each topic in a specific document
P(Z1d)
* Another type of parameter to learn



Admixture Models

In this type of model, the “generative process”
for a document d can be described as:

1. For each token in the document d:

a) Sample a topic z according to P(z | d)
b) Sample a word w according to P(w | 2)

Contrast with Naive Bayes:

1. Sample a topic z according to P(z)

2. For each token in the document d:
a) Sample a word w according to P(w | 2)



Admixture Models

In this type of model, the “generative process”
for a document d can be described as:

1. For each token in the document d:
a) Sample a topic z according to P(z | d)
b) Sample a word w according to P(w | z)

« Same as in Naive Bayes
(each “topic” has a distribution of words)

» Parameters can be learned in a similar way
» Called 3 (sometimes ®)by convention



Admixture Models

In this type of model, the “generative process”
for a document d can be described as:

1. For each token in the document d:
a) Sample a topic z according to P(z | d)
b) Sample a word w according to P(w | 2)

» Related to but different from Naive Bayes

* Instead of one P(z) shared by every document,
each document has its own distribution

* More parameters to learn
 Called 6 by convention



Admixture Models
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Learning

How to learn 5 and 67?

Expectation Maximization (EM) once again!



Learning

E-step

P(topic=j | word=v, 64, B)

= P(word=v, topic=j | 6, B)
Zk P(WOI’d=V, tOp|C=k | Bdl Bk)




n

Learning

M-step

ew ij

# tokens in d with topic label j

# tokens in d

if the topic labels were

observed!
* just counting




Learning

M-step

new ij

= 2.4 P(topic i=] | word J, 6,4, B)
2, 2.4P(topic i=k | word i, 8,, 3,) 4=
just the number of
tokens in the document

sum over each token /i in document d

« numerator: the expected number of tokens with topic j
in document d

 denominator: the number of tokens in document d



Learning

M-step

new G;,
= # tokens with topic label j and word w
# tokens with topic label j

if the topic labels were

observed!
* just counting




Learning

M-step

new G;,

= 2; l(word i=w) P(topic i=j] | word i=w, 8,, 3)
ziz) JI(word i2v) P(topic i=j T word i=v, 8, B)
sum over vocabulary

sum over each token i/ in the entire corpus
* numerator: the expected number of times word w
belongs to topic |

 denominator: the expected number of all tokens
belonging to topic j




Smoothing

From last week’s Naive Bayes lecture:

Adding “pseudocounts” to the observed counts
when estimating P(X | Y) is called smoothing

Smoothing makes the estimated probabilities less
extreme

* It is one way to perform regularization in
Naive Bayes (reduce overfitting)



Smoothing

Smoothing is also commonly done in
unsupervised learning like topic modeling

* Today we’ll see a mathematical justification for
smoothing



Smoothing: Generative Perspective

In general models, we can also treat the
parameters themselves as random variables

. P(6)?
- P(B)?

Called the prior probability of the parameters
« Same concept as the prior P(Y) in Naive Bayes

We’'ll see that pseudocount smoothing is the result
when the parameters have a prior distribution
called the Dirichlet distribution



Geometry of Probability

A distribution over K elements is a point on a K-1
simplex

» a 2-simplex is called a triangle
A




Geometry of Probability

A distribution over K elements is a point on a K-1
simplex

» a 2-simplex is called a triangle
A

P(A) = 1
P(B) =0
P(C) = 0




Geometry of Probability

A distribution over K elements is a point on a K-1
simplex

» a 2-simplex is called a triangle
A

P(A) = 1/2
P(B) = 1/2
P(C) = 0




Geometry of Probability

A distribution over K elements is a point on a K-1
simplex
» a 2-simplex is called a triangle

A
P(A) = 1/3
P(B) = 1/3
P(C) = 1/3
@




Dirichlet Distribution

Continuous distribution (probability density) over
points in the simplex

« “distribution of distributions”
A




Dirichlet Distribution

Continuous distribution (probability density) over
points in the simplex

o “distribution of :\:Jlstrlbutlons Denoted Dirichlet(a)

a is a vector that gives the
mean/variance of the
distribution

In this example, agis larger
than the others, so points
closer to B are more likely
 Distributions that give B high
probability are more likely
than distributions that don’t




Dirichlet Distribution

Continuous distribution (probability density) over
points in the simplex

« “distribution of distributions”
A

Denoted Dirichlet(a)

a is a vector that gives the
mean/variance of the
distribution

In this example, a,=agz=ac,
so distributions close to
uniform are more likely

Larger values of a give
higher density around mean

B ¢ (lower variance)




Latent Dirichlet Allocation (LDA)

LDA is the topic model previous slides, but with
Dirichlet priors on the parameters 6 and

 P(@81 a) = Dirichlet(a)
P(B | n) = Dirichlet(n)

(51}(,910,210,1010)
—Hp ﬁz)Hp (9a) (TTN-1 P(Zan | 90)P(wan | Bk, 74n) )

* Most widely used topic model

» Lots of different implementations / learning
algorithms



MAP Learning

How to learn 8 and 6 with Dirichlet priors?

The posterior distribution of parameters for LDA:

p(ﬁl:K, 91:D, 21:D wl:D)
p(wi.p)

p(ﬁl:K; 01:[), zl;D | wl:D) —

 Want to maximize this



MAP Learning

So far we have used EM to find parameters that
maximize the likelihood of the data

EM can also find the maximum a posteriori (MAP)

solution
 the parameters that maximum the posterior probability

P(ﬁlzK,Hl:D,ZLD,wLD)
p(w1.p) €=M constant

« Similar objective as before, but with additional
terms for the probability of 6 and



MAP Learning

» E-step is the same
* M-step is modified

pseudocounts
new 6, f

= a; -1+ 3.,P(topic i=1 | word i, 84, B,)
2, (a,-1+ X.4P(topic i=k | word i, 84, By))




MAP Learning

Where do the pseudocounts come from?

The probability of observing the kth topic ntimes given
the parameter 6, is proportional to:

6,

The probability density of the parameter 6, given the
Dirichlet parameter qy is proportional to:

Qkak-1
The product of these probabilities is proportional to:

n+a,-1
6k+k



Smoothing: Generative Perspective

Larger pseudocounts will bias the MAP estimate more heavily
Larger Dirichlet parameters concentrate the density around the mean

Larger a Smaller a




Smoothing: Generative Perspective

Dirichlet prior MAP estimation yields "a — 1"
smoothing
e So what happensifa<1?

Highest density around edges of simplex
* Prior favors small number of topics per document



Posterior Inference

What if we don’t just want the parameters that
maximize the posterior?

p(B1.x,61.p, 210, W1.D)
p(wi.p)

What it we care about the entire posterior dlstrlbutlon’?

e or at least the mean of the posterior distribution

p(ﬁl:K, 91:[):2]_:_[) |'U.)]_:D) =

Why? ~ |
» maybe the maximum doesn’t look like therest /|

« other points of the posterior more likely to foet N
generalize to data you haven’t seen before o\



Posterior Inference

What if we don’t just want the parameters that
maximize the posterior?

p(ﬁl:Ka 91:D, Z21:D wl:D)
p(wl:D)

p(ﬁlle 91:D:Z]_:D |'U.)]_:D) =

This is harder

« Computing the denominator involves summing over all
possible configurations of the latent variables/parameters



Posterior Inference

Various methods existing for approximating the
posterior (also called Bayesian inference)

« Random sampling
 Monte Carlo methods

« Variational inference
« Optimization using EM-like procedure
 MAP estimation is a simple case of this



Dimensionality Reduction

Recall:

Methods like PCA can transform a high-dimensional
feature space (e.g., each word is a feature) into a low-

dimensional space
 Each feature vector is rewritten as a new vector



Dimensionality Reduction

Topic models can also be used as a form of
dimensionality reduction

« Each document’s feature vector is 6, aka P(Z | d)
« With 100 topics, this is a 100-dimensional vector

« Semantically similar words will map to a similar part
of the feature space, since then tend to be grouped
iInto the same topics

This is similar to the ideas behind “embedding”
methods like word2vec



Priors as Regularization

We saw that Dirichlet priors are equivalent to
pseudocount smoothing, which is used as
regularization in Naive Bayes

Other types of priors are equivalent to other types
of regularization you've seen!



Priors as Regularization

Recall: For real-valued weights (e.g., SVM or logistic
regression), the most common type of regularization is
to minimize the L2 norm of the weights

Minimizing the L2 norm ends up being mathematically
equivalent to having a prior distribution on the weights
where the prior is the Gaussian (normal) dlstrlbutlon'

L I B B

« The mean of the Gaussianis 0

* The variance of the Gaussian
acts as the reqgularization
strength (‘C’ or ‘alpha’)

|||||||||||||||||
=5 -4 -3 -2 -1 0 1 2 3 4 )



Priors as Regularization

L1 regularization, which favors weights that are
exactly 0, is equivalent to the Laplace (double
exponential) distribution as the prior

 Like with Gaussian, the mean is O and variance
adjusts the regularization strength

T T l 1

05 [~ ' =0,
p=0,
p=0,
5

0.4

0.3

0.2

0.1

0 =
-:10 8 6 4 -2 0 2 4 6 8 10



Priors as Inductive Bias

Recall that an inductive bias intentionally biases
what a classifier learns toward certain
characteristics that you think will be useful

* Regularization toward small weights is a common
type of inductive bias in machine learning

 There are other useful inductive biases that can be

encoded as priors
» Any prior on the parameters is an inductive bias



Priors as Inductive Bias

In topic models:

Dirichlet priors bias the learned distributions
toward the uniform distribution

* Yields less extreme probabilities, reducing overfitting

But Dirichlet priors don'’t
have to bias toward uniform!

Other biases can be useful.




Priors as Inductive Bias

In topic models:
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Priors as Inductive Bias

For real-valued parameters, a Gaussian prior with
mean of O is equivalent to L2 regularization

Can also use a Gaussian prior with a mean set to
some value other than 0!
* If you believe certain features should have a positive

or negative weight, you could set the mean of the prior
to a positive or negative value to bias it in that direction



Priors as Inductive Bias

Example: domain adaptation

What to do when your training data includes
different domains (distributions of data)?

* e.g., sentiment classification on reviews of movies
and reviews of mattresses

 Challenge in machine learning: might learn patterns
that work in one domain but not another



Priors as Inductive Bias

One idea: learn each domain separately

* But this is limited because you have less training data
for each domain

* How to learn domain-specific parameters while still
using all of the training data?

One approach (Finkel and Manning 2009):
 Learn “overall” feature weights for all domains

» Learn domain-specific feature weights

 The prior for the domain-specific weights is a Gaussian
distribution where the mean is the “overall” weight



