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Types of Learning
Recall the definitions of:
• Supervised learning
• Most of the semester has been supervised

• Unsupervised learning
• Example: k-means clustering

• Semi-supervised learning
• More similar to supervised learning

• Task is still to predict labels
• But makes use of unlabeled data in addition to labeled

• We haven’t seen any algorithms yet



This Week
Semi-supervised learning
• General principles
• General-purpose algorithms
• Algorithms for generative models

We’ll also get into how these ideas can be applied 
to unsupervised learning as well (more next week)



Types of Learning

Supervised learning Unsupervised learning
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Types of Learning

Can combine supervised and unsupervised learning
• Two natural clusters
• Idea: assume instances within cluster share a label
• Then train a classifier on those labels



Types of Learning

This particular process is 
not a common method 
(though it is a valid one!) 

But it illustrates the ideas of 
semi-supervised learning



Types of Learning

Semi-supervised learning



Types of Learning

Let’s look at another illustration of why
semi-supervised learning is useful



Types of Learning

If we ignore the unlabeled data, there are many 
hyperplanes that are a good fit to the training data



Types of Learning

Looking at all of the data, we might better evaluate 
the quality of different separating hyperplanes

Assumption:
Instances in the 
same cluster are 
more likely to have 
the same label



Types of Learning

A line that cuts through both clusters is 
probably not a good separator

Assumption:
Instances in the 
same cluster are 
more likely to have 
the same label



Types of Learning

A line with a small margin between clusters 
probably has a small margin on labeled data

Assumption:
Instances in the 
same cluster are 
more likely to have 
the same label



Types of Learning

This would be a pretty good separator, 
if our assumption is true

Assumption:
Instances in the 
same cluster are 
more likely to have 
the same label



Types of Learning

Our assumption might be wrong:
But with no other information, incorporating 
unlabeled data probably better than ignoring it! 

Assumption:
Instances in the 
same cluster are 
more likely to have 
the same label



Semi-Supervised Learning
Semi-supervised learning requires some 
assumptions about the distribution of data and its 
relation to labels

Common assumption:
Instances are more likely to have the same label if 
they are similar (e.g., have a small distance)



Semi-Supervised Learning
Semi-supervised learning is a good idea if your 
labeled dataset is small, and you have a large 
amount of unlabeled data

If your labeled data is large, then semi-supervised 
learning less likely to help…
• How large is “large”? Use learning curves to 

determine if you have enough data.
• It’s possible for semi-supervised methods to hurt! 

Be sure to evaluate.



Semi-Supervised Learning
Terminology: both the labeled and unlabeled data 
that you use to build the classifier are still 
considered training data
• Though you should distinguish between 

labeled/unlabeled

Test data and validation data are labeled
• As always, don’t include test/validation data in 

training



Label Propagation
Label propagation is a semi-supervised 
algorithm similar to K-nearest neighbors

Each instance has a probability distribution over 
class labels: P(Yi) for instance i
• Labeled instances: P(Yi=y) = 1 if the label is y

= 0 otherwise
• Unlabeled instances: P(Yi=y) = 1/S initially,

where S is the
number of classes



Algorithm iteratively updates P(Yi) for unlabeled 
instances

P(Yi=y) =                  P(Yj=y)
where N(i) is the set of K-nearest neighbors of i
• i.e., an average of the labels of the neighbors

One iteration of the algorithm performs an update 
of P(Yi) for every instance
• Stop iterating once P(Yi) stops changing

Label Propagation



Label Propagation
Lots of variants of this algorithm

Commonly, instead of a simple average of the 
nearest neighbors, a weighted average is used, 
where neighbors are weighted by their distance to 
the instance
• In this version, need to be careful to renormalize 

values after updates so P(Yi) still forms a 
distribution that sums to 1



Label Propagation
Label propagation is often used as an initial step 
for assigning labels to all the data
• You would then still train a classifier on the data 

to make predictions of new data
• For training the classifier, you might only include 

instances where P(Yi) is sufficiently high



Self-Training
Self-training is the oldest and perhaps simplest 
form of semi-supervised learning

General idea:
1. Train a classifier on the labeled data, as you 

normally would
2. Apply the classifier to the unlabeled data
3. Treat the classifier predictions as labels, then 

re-train with the new data



Self-Training
Usually you won’t include the entire dataset as 
labeled data in the next step
• High risk of included mislabeled data

Instead, only include instances that your classifier 
predicted with high confidence
• e.g., high probability or high score
• Similar to thresholding to get high precision

This process can be repeated until there are no 
new instances with high confidence to add



Self-Training
In generative models, an algorithm closely related 
to self-training is commonly used, called 
expectation maximization (EM).
• We’ll start with Naïve Bayes as an example of a 

generative model to demonstrate EM



Naïve Bayes
Learning probabilities in Naïve Bayes:

P(Xj=x | Y=y) =
# instances with label y where feature j has value x

# instances with label y



Naïve Bayes
Learning probabilities in Naïve Bayes:

P(Xj=x | Y=y) =
I(Yi=y) I(Xij=x)

I(Yi=y)

where I() is an indicator function that outputs 1 if 
the argument is true and 0 otherwise

i=1

N

i=1

N
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Naïve Bayes
Learning probabilities in Naïve Bayes:

P(Xj=x | Y=y) =
P(Yi=y) I(Xij=x)

P(Yi=y)

P(Yi=y) is the probability that instance i has label y
• For labeled data, this will be the same as the indicator 

function (1 if the label is actually y, 0 otherwise)

i=1

N

i=1

N We can also estimate 
this for unlabeled 
instances!



Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

P(Xi)



Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

P(Xi)
• These are the parameters learned 

in the training step of Naïve Bayes



Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

P(Xi)
• Last time we said not to worry 

about this, but now we need it



Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

Σy’ P(Xi | Y=y’) P(Y=y’)
• Equivalent to the sum of the numerators of 

each possible y value
• Called marginalization (but not covered here)



Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

Σy’ P(Xi | Y=y’) P(Y=y’)

In other words: calculate the Naïve Bayes prediction 
value for each class label, then adjust to sum to 1



Semi-Supervised Naïve Bayes
1. Initially train the model on the labeled data
• Learn P(X | Y) and P(Y) for all features and classes

2. Run the EM algorithm (next slide) to update 
P(X | Y) and P(Y) based on unlabeled data

3. After EM converges, the final estimates of
P(X | Y) and P(Y) can be used to make 
classifications



Expectation Maximization (EM)
The EM algorithm iteratively alternates between 
two steps: 

1. Expectation step (E-step)

Calculate P(Y=y | Xi) =        P(Xi | Y=y) P(Y=y)
for every unlabeled         Σy’ P(Xi | Y=y’) P(Y=y’)
instance

These parameters come from 
the previous iteration of EM

P(Y=y | Xi) = I(Yi=y) for 
labeled instances



Expectation Maximization (EM)
The EM algorithm iteratively alternates between 
two steps: 

2. Maximization step (M-step)

Update the probabilities P(X | Y) and P(Y), 
replacing the observed counts with the 
expected values of the counts
• Equivalent to Σi P(Y=y | Xi) 



Expectation Maximization (EM)
The EM algorithm iteratively alternates between 
two steps: 

2. Maximization step (M-step)

P(Xj=x | Y=y) = Σi P(Y=y | Xi) I(Xij=x)
Σi P(Y=y | Xi)

for each feature j 
and each class y

These values come 
from the E-step



Expectation Maximization (EM)
The EM algorithm iteratively alternates between 
two steps: 

2. Maximization step (M-step)

P(Y=y) = Σi P(Y=y | Xi)
N             (the # of instances)

for each class y



Expectation Maximization (EM)
The EM algorithm iteratively alternates between 
two steps: 

2. Maximization step (M-step)

Why is it called maximization?
• The updates are maximizing the likelihood of the 

variables
• Same idea as the logistic regression objective 

function



Expectation Maximization (EM)
An iteration of the EM algorithm corresponds to 
both an E-step followed by an M-step
• Each E-step uses the parameters learned from the 

previous M-step
• Each M-step uses the expected values learned from 

the previous E-step

The algorithm converges when the E-step and 
M-step are identical to the previous iteration
• The EM algorithm will always converge



Semi-Supervised Naïve Bayes
1. Initially train the model on the labeled data
• Learn P(X | Y) and P(Y) for all features and classes

2. Run the EM algorithm to update P(X | Y) and 
P(Y) based on unlabeled data

3. After EM converges, the final estimates of
P(X | Y) and P(Y) can be used to make 
classifications



Semi-Supervised Naïve Bayes
A potential challenge if the size of unlabeled 
data is much larger than labeled data:
The M-step (updating the probabilities) will be 
mostly influenced by the unlabeled data
• The labeled data might not have much effect

Modification to EM for semi-supervised NB:
• Start with a small amount of unlabeled data
• Gradually increase the amount of unlabeled data 

in later iterations of EM



Expectation Maximization (EM)
In general, EM can be used to optimize 
parameters of any generative model with latent 
variables (variables with unknown value)
• The Y labels of the unlabeled data are the latent 

variables in semi-supervised Naïve Bayes

We’ll see another example of EM next week 
(latent topic models)



Expectation Maximization
A variant of EM: 
In the M-step, replace the expected value with 1 if 
it is the most probable class and 0 otherwise 
• This ends up being identical to self-training

Sometimes called “hard” EM, while the traditional 
version is called “soft” EM



Expectation Maximization
EM can be used for any latent variables
• Doesn’t matter if some are labeled and others are 

unlabeled
• EM can work even if the data is entirely unlabeled!

Generative models are often used for 
unsupervised learning / clustering
• EM is the learning algorithm



Unsupervised Naïve Bayes
1. Need to set the number of latent classes
2. Initially define the parameters randomly
• Randomly initialize P(X | Y) and P(Y) for all features 

and classes
3. Run the EM algorithm to update P(X | Y) and 

P(Y) based on unlabeled data
4. After EM converges, the final estimates of

P(X | Y) and P(Y) can be used for clustering


