
Learning from
Unlabeled Data

INFO-4604, Applied Machine Learning
University of Colorado Boulder

December 4-6, 2018
Prof. Michael Paul

Types of Learning
Recall the definitions of:
• Supervised learning
• Most of the semester has been supervised

• Unsupervised learning
• Example: k-means clustering

• Semi-supervised learning
• More similar to supervised learning

• Task is still to predict labels
• But makes use of unlabeled data in addition to labeled

• We haven’t seen any algorithms yet

This Week
Semi-supervised learning
• General principles
• General-purpose algorithms
• Algorithms for generative models

We’ll also get into how these ideas can be applied
to unsupervised learning as well (more next week)

Types of Learning

Supervised learning Unsupervised learning

Types of Learning

Semi-supervised learning

Types of Learning

Can combine supervised and unsupervised learning

Types of Learning

Can combine supervised and unsupervised learning
• Two natural clusters

Types of Learning

Can combine supervised and unsupervised learning
• Two natural clusters
• Idea: assume instances within cluster share a label

Types of Learning

Can combine supervised and unsupervised learning
• Two natural clusters
• Idea: assume instances within cluster share a label
• Then train a classifier on those labels

Types of Learning

This particular process is
not a common method
(though it is a valid one!)

But it illustrates the ideas of
semi-supervised learning

Types of Learning

Semi-supervised learning

Types of Learning

Let’s look at another illustration of why
semi-supervised learning is useful

Types of Learning

If we ignore the unlabeled data, there are many
hyperplanes that are a good fit to the training data

Types of Learning

Looking at all of the data, we might better evaluate
the quality of different separating hyperplanes

Assumption:
Instances in the
same cluster are
more likely to have
the same label

Types of Learning

A line that cuts through both clusters is
probably not a good separator

Assumption:
Instances in the
same cluster are
more likely to have
the same label

Types of Learning

A line with a small margin between clusters
probably has a small margin on labeled data

Assumption:
Instances in the
same cluster are
more likely to have
the same label

Types of Learning

This would be a pretty good separator,
if our assumption is true

Assumption:
Instances in the
same cluster are
more likely to have
the same label

Types of Learning

Our assumption might be wrong:
But with no other information, incorporating
unlabeled data probably better than ignoring it!

Assumption:
Instances in the
same cluster are
more likely to have
the same label

Semi-Supervised Learning
Semi-supervised learning requires some
assumptions about the distribution of data and its
relation to labels

Common assumption:
Instances are more likely to have the same label if
they are similar (e.g., have a small distance)

Semi-Supervised Learning
Semi-supervised learning is a good idea if your
labeled dataset is small, and you have a large
amount of unlabeled data

If your labeled data is large, then semi-supervised
learning less likely to help…
• How large is “large”? Use learning curves to

determine if you have enough data.
• It’s possible for semi-supervised methods to hurt!

Be sure to evaluate.

Semi-Supervised Learning
Terminology: both the labeled and unlabeled data
that you use to build the classifier are still
considered training data
• Though you should distinguish between

labeled/unlabeled

Test data and validation data are labeled
• As always, don’t include test/validation data in

training

Label Propagation
Label propagation is a semi-supervised
algorithm similar to K-nearest neighbors

Each instance has a probability distribution over
class labels: P(Yi) for instance i
• Labeled instances: P(Yi=y) = 1 if the label is y

= 0 otherwise
• Unlabeled instances: P(Yi=y) = 1/S initially,

where S is the
number of classes

Algorithm iteratively updates P(Yi) for unlabeled
instances

P(Yi=y) = P(Yj=y)
where N(i) is the set of K-nearest neighbors of i
• i.e., an average of the labels of the neighbors

One iteration of the algorithm performs an update
of P(Yi) for every instance
• Stop iterating once P(Yi) stops changing

Label Propagation

Label Propagation
Lots of variants of this algorithm

Commonly, instead of a simple average of the
nearest neighbors, a weighted average is used,
where neighbors are weighted by their distance to
the instance
• In this version, need to be careful to renormalize

values after updates so P(Yi) still forms a
distribution that sums to 1

Label Propagation
Label propagation is often used as an initial step
for assigning labels to all the data
• You would then still train a classifier on the data

to make predictions of new data
• For training the classifier, you might only include

instances where P(Yi) is sufficiently high

Self-Training
Self-training is the oldest and perhaps simplest
form of semi-supervised learning

General idea:
1. Train a classifier on the labeled data, as you

normally would
2. Apply the classifier to the unlabeled data
3. Treat the classifier predictions as labels, then

re-train with the new data

Self-Training
Usually you won’t include the entire dataset as
labeled data in the next step
• High risk of included mislabeled data

Instead, only include instances that your classifier
predicted with high confidence
• e.g., high probability or high score
• Similar to thresholding to get high precision

This process can be repeated until there are no
new instances with high confidence to add

Self-Training
In generative models, an algorithm closely related
to self-training is commonly used, called
expectation maximization (EM).
• We’ll start with Naïve Bayes as an example of a

generative model to demonstrate EM

Naïve Bayes
Learning probabilities in Naïve Bayes:

P(Xj=x | Y=y) =
instances with label y where feature j has value x

instances with label y

Naïve Bayes
Learning probabilities in Naïve Bayes:

P(Xj=x | Y=y) =
I(Yi=y) I(Xij=x)

I(Yi=y)

where I() is an indicator function that outputs 1 if
the argument is true and 0 otherwise

i=1

N

i=1

N

Naïve Bayes
Learning probabilities in Naïve Bayes:

P(Xj=x | Y=y) =
I(Yi=y) I(Xij=x)

I(Yi=y)

where I() is an indicator function that outputs 1 if
the argument is true and 0 otherwise

i=1

N

i=1

N

Naïve Bayes
Learning probabilities in Naïve Bayes:

P(Xj=x | Y=y) =
P(Yi=y) I(Xij=x)

P(Yi=y)

P(Yi=y) is the probability that instance i has label y
• For labeled data, this will be the same as the indicator

function (1 if the label is actually y, 0 otherwise)

i=1

N

i=1

N We can also estimate
this for unlabeled
instances!

Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

P(Xi)

Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

P(Xi)
• These are the parameters learned

in the training step of Naïve Bayes

Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

P(Xi)
• Last time we said not to worry

about this, but now we need it

Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

Σy’ P(Xi | Y=y’) P(Y=y’)
• Equivalent to the sum of the numerators of

each possible y value
• Called marginalization (but not covered here)

Naïve Bayes
Estimating P(Yi=y) for unlabeled instances?

Estimate P(Y=y | Xi)
• Probability of label y given feature vector Xi

Bayes’ rule:
P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)

Σy’ P(Xi | Y=y’) P(Y=y’)

In other words: calculate the Naïve Bayes prediction
value for each class label, then adjust to sum to 1

Semi-Supervised Naïve Bayes
1. Initially train the model on the labeled data
• Learn P(X | Y) and P(Y) for all features and classes

2. Run the EM algorithm (next slide) to update
P(X | Y) and P(Y) based on unlabeled data

3. After EM converges, the final estimates of
P(X | Y) and P(Y) can be used to make
classifications

Expectation Maximization (EM)
The EM algorithm iteratively alternates between
two steps:

1. Expectation step (E-step)

Calculate P(Y=y | Xi) = P(Xi | Y=y) P(Y=y)
for every unlabeled Σy’ P(Xi | Y=y’) P(Y=y’)
instance

These parameters come from
the previous iteration of EM

P(Y=y | Xi) = I(Yi=y) for
labeled instances

Expectation Maximization (EM)
The EM algorithm iteratively alternates between
two steps:

2. Maximization step (M-step)

Update the probabilities P(X | Y) and P(Y),
replacing the observed counts with the
expected values of the counts
• Equivalent to Σi P(Y=y | Xi)

Expectation Maximization (EM)
The EM algorithm iteratively alternates between
two steps:

2. Maximization step (M-step)

P(Xj=x | Y=y) = Σi P(Y=y | Xi) I(Xij=x)
Σi P(Y=y | Xi)

for each feature j
and each class y

These values come
from the E-step

Expectation Maximization (EM)
The EM algorithm iteratively alternates between
two steps:

2. Maximization step (M-step)

P(Y=y) = Σi P(Y=y | Xi)
N (the # of instances)

for each class y

Expectation Maximization (EM)
The EM algorithm iteratively alternates between
two steps:

2. Maximization step (M-step)

Why is it called maximization?
• The updates are maximizing the likelihood of the

variables
• Same idea as the logistic regression objective

function

Expectation Maximization (EM)
An iteration of the EM algorithm corresponds to
both an E-step followed by an M-step
• Each E-step uses the parameters learned from the

previous M-step
• Each M-step uses the expected values learned from

the previous E-step

The algorithm converges when the E-step and
M-step are identical to the previous iteration
• The EM algorithm will always converge

Semi-Supervised Naïve Bayes
1. Initially train the model on the labeled data
• Learn P(X | Y) and P(Y) for all features and classes

2. Run the EM algorithm to update P(X | Y) and
P(Y) based on unlabeled data

3. After EM converges, the final estimates of
P(X | Y) and P(Y) can be used to make
classifications

Semi-Supervised Naïve Bayes
A potential challenge if the size of unlabeled
data is much larger than labeled data:
The M-step (updating the probabilities) will be
mostly influenced by the unlabeled data
• The labeled data might not have much effect

Modification to EM for semi-supervised NB:
• Start with a small amount of unlabeled data
• Gradually increase the amount of unlabeled data

in later iterations of EM

Expectation Maximization (EM)
In general, EM can be used to optimize
parameters of any generative model with latent
variables (variables with unknown value)
• The Y labels of the unlabeled data are the latent

variables in semi-supervised Naïve Bayes

We’ll see another example of EM next week
(latent topic models)

Expectation Maximization
A variant of EM:
In the M-step, replace the expected value with 1 if
it is the most probable class and 0 otherwise
• This ends up being identical to self-training

Sometimes called “hard” EM, while the traditional
version is called “soft” EM

Expectation Maximization
EM can be used for any latent variables
• Doesn’t matter if some are labeled and others are

unlabeled
• EM can work even if the data is entirely unlabeled!

Generative models are often used for
unsupervised learning / clustering
• EM is the learning algorithm

Unsupervised Naïve Bayes
1. Need to set the number of latent classes
2. Initially define the parameters randomly
• Randomly initialize P(X | Y) and P(Y) for all features

and classes
3. Run the EM algorithm to update P(X | Y) and

P(Y) based on unlabeled data
4. After EM converges, the final estimates of

P(X | Y) and P(Y) can be used for clustering

