
Dimensionality Reduction
INFO-4604, Applied Machine Learning

University of Colorado Boulder

October 25, 2018
Prof. Michael Paul





Dimensionality
The dimensionality of data is the number of 
variables
• Usually this refers to the number of input variables
• In other words, the number of features

The curse of dimensionality refers to challenges 
that arise when data has many dimensions
• Training: the more features you have, the more data 

you need to learn
• Distance: all points are far apart in high-dimensional 

space, harder to define “close” vs “far”



Dimensionality Reduction
Dimensionality reduction refers to the process 
of reducing the number of features in your data
• Last time we saw feature selection as one approach 

that reduces the number of features
• Today, we’ll see methods that transform the feature 

space, creating features that are different from the 
original features



Dimensionality Reduction



Dimensionality Reduction

“go right”

“go forward”
or

“go up”

Going from 3D to 2D: can lose information, create ambiguity



Dimensionality Reduction

“go right”

“go forward”

“go up”

Can adjust the 2D values to carry over 3D meaning



Dimensionality Reduction
Example: two different types of blood pressure, 
usually correlated

BP(S) BP(D) Heart,Rate Temperature
120 80 75 98.5
125 82 78 98.7
140 93 95 98.5
112 74 80 98.6



Dimensionality Reduction
Example: two different types of blood pressure, 
usually correlated

You might replace the two BP features with a new 
feature that simply averages the two original BP values
• This reduces the number of features, but different from 

feature selection (not just selecting existing features)

BP(S) BP(D) BP'Avg Heart0Rate Temperature
120 80 100 75 98.5
125 82 104 78 98.7
140 93 117 95 98.5
112 74 93 80 98.6



Geometric Intuition
Like feature selection, transformation-based 
dimensionality reduction is usually automated
• You don’t manually specify rules 

(like averaging BP in the previous example)

In general, what does it mean to transform or 
change the features?



Suppose we have two dimensions (two features)



Feature selection: choose one of the two features to keep



Suppose we choose the feature represented by the x-axis

Project the points onto the x-axis



The positions along the x-axis now represent 
the feature values of each instance

Suppose we choose the feature represented by the x-axis



Suppose we choose the feature represented by the y-axis

Project the points onto the y-axis



The positions along the y-axis 
now represent the feature 
values of each instance

Suppose we choose the feature represented by the y-axis



We don’t have to restrict ourselves to picking either the 
x-axis or y-axis

We could create a new axis!



We don’t have to restrict ourselves to picking either the 
x-axis or y-axis

Project points onto this new axis



The positions along this new 
axis represent the feature 
values of each instance

We don’t have to restrict ourselves to picking either the 
x-axis or y-axis



The positions along this new 
axis represent the feature 
values of each instance

This is an example of transforming the feature space 
(as opposed to selecting a subset of features)



Dimensionality Reduction
In general:
• Original feature space has D dimensions (axes)
• New feature space has K dimensions (axes), K < D

The transformed feature vectors are sometimes 
called embeddings



Dimensionality Reduction
Why does dimensionality reduction work?
Why can it be automated?



Dimensionality Reduction
One intuition:
If multiple features are correlated, they can often 
be mapped to the same feature without losing a lot 
of information
• The blood pressure example applies here



Dimensionality Reduction
Another intuition:
It’s possible to change the dimensionality so that 
instances that were similar to each other (or close 
to each other) in the original feature space are still 
similar to each other in the reduced space
• and instances that were previously dissimilar should 

be dissimilar in the new space

You might imagine automating this, trying to learn 
a reduction that minimizes the difference between 
the original similarities and new similarities



Dimensionality Reduction
Another intuition:
Think about dimensionality reduction as a 
compression problem (lossy compression)
• Want to compress the data as much as possible 

while retaining “most” information
• If you transform your feature vectors into new feature 

vectors with fewer dimensions, how well could you 
reconstruct the original vectors from the smaller 
vectors?



Dimensionality Reduction
Most dimensionality reduction techniques work 
based on some of these intuitions (maybe not all 
of them, though they are related)
• If you don’t know a particular technique, you can 

probably still assume it is taking advantage of these 
general principles

We’ll look at two of the more common techniques 
today, but won’t cover a lot of technical detail



Principle Component Analysis
Principle component analysis (PCA) is a widely 
used technique that chooses new axes to project 
the data onto

The new axes are called principle components



Principle Component Analysis
PCA does not use any information about the class 
labels
• Unsupervised dimensionality reduction
• This has advantages and disadvantages 

(we’ll discuss later)

So how does PCA decide how to choose axes?
• Idea: pick an axis so that the values will have high 
variance once projected onto it



Principle Component Analysis
A

B

Projection onto A:
Projection onto B:



Principle Component Analysis
A

B

Projection onto A:
Projection onto B:

B yields higher variance (points are more spread out)
• More “informative”; separates the points better
• More likely to be useful for separating by class



Principle Component Analysis
Overview of PCA algorithm (details in book):
• Start by identifying the principle component (axis) 

with the highest variance
• Pick another principle component that is orthogonal 

(forms a right angle with) the previous component(s) 
with the next-highest variance
• Why orthogonal? Don’t want to just pick another nearly 

identical component, or it won’t give you much information 
beyond what the other component is already providing

• Point is to reduce redundancy
• Keep repeating until K principle components have 

been chosen



Principle Component Analysis
Overview of PCA algorithm (details in book):
• The algorithm will also learn a function that 

transforms an instance x into the projected space
• Then you can use the transformed instances in your 

prediction algorithm

Note: variance depends on the scale of the values 
• For PCA to work, important that all features are on 

the same scale
• Perform normalization/standardization first



Principle Component Analysis
What is the dimensionality, K?

This is a hyperparameter you have to provide
• Common values are on the order of 10–100
• But you can tune this, like other hyperparameters
• Next week



Linear Discriminant Analysis
Linear discriminant analysis (LDA*) is another 
technique that works similarly to PCA
• Key difference: instead of choosing axes that 

have high variance, LDA chooses axes that best 
separate the class labels
• Supervised dimensionality reduction

* not to be confused with Latent Dirichlet Allocation (also 
abbreviated LDA), a topic modeling algorithm that is also 
sometimes used for dimensionality reduction



Linear Discriminant Analysis



Linear Discriminant Analysis
LDA uses a metric called scatter that measures 
how separated the class labels are along an axis
• See book for more detail (not needed in this class)

Similar idea to how decision trees choose features 
at each node
• Want features that will separate the classes



Supervised or Unsupervised?
Supervised reduction (LDA)
• Changes the feature space in a way that directly 

optimizes for the prediction task

Unsupervised reduction (PCA)
• Can take advantage of unlabeled data
• Potentially advantageous when you have a small 

amount of training data but a large amount of 
unlabeled data from the same domain



Supervised or Unsupervised?
How can unlabeled data help?

Example: Classifying news articles
• Suppose you never see the word “iPad” in your training set
• But it occurs plenty of times in your entire collection of news 

articles (just not labeled)
• This word is probably correlated with other words like 

“iPhone”, “tablet”, “Apple”, etc. 
• Most techniques will pick up on this correlation, and 

instances containing the word “iPad” will get transformed 
similarly to instances containing these other words



Revisiting Neural Networks
Input Feature

Input Feature

Input Feature

Input Feature

Input Feature

…

Hidden Feature

Hidden Feature

Hidden Feature Prediction

Neural networks perform dimensionality 
reduction in the hidden layers



Revisiting Neural Networks
Input Feature

Input Feature

Input Feature

Input Feature

Input Feature

…

Hidden Feature

Hidden Feature

Hidden Feature ???

Researchers have discovered that the 
first layer often learns similar outputs 
even when the data and task change



Revisiting Neural Networks
Input Feature

Input Feature

Input Feature

Input Feature

Input Feature

…

Hidden Feature

Hidden Feature

Hidden Feature ???

An increasingly common technique is to 
train the first layer once (“pre-training”) 
and keep reusing it, doing most 
experimentation in the hidden layers



Revisiting Neural Networks
Input Feature

Input Feature

Input Feature

Input Feature

Input Feature

…

Hidden Feature

Hidden Feature

Hidden Feature ???

Many resources now exist of “pre-trained” 
embeddings created with neural networks 
that can be used for various problems


