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Generalization

Prediction functions that work on the 
training data might not work on other data

Minimizing the training error is a 
reasonable thing to do, but it’s possible to 
minimize it “too well”
• If your function matches the training data well 

but is not learning general rules that will work 
for new data, this is called overfitting



Generalization



Overfitting: Logistic Regression

Suppose you are a search engine and you build 
a classifier to infer whether a user is over the 
age of 65 based on what they’ve searched.



Overfitting: Logistic Regression

One person in your dataset searched the 
following typo:

This person was over age 65.
Optimizing the logistic regression loss function, 
we would learn that anyone who searches 
slfdkjslkfjoij is over 65 with probability 1.



Overfitting: Logistic Regression

One person in your dataset searched the 
following typo:

Hard to conclude much from 1 example.
Don’t really want to classify all people who make 
this typo in the future this way.



Overfitting: Logistic Regression

Ten people searched for the following form:

All ten people were over age 65.
Optimizing the logistic regression loss function, 
we would learn that anyone who searches this 
query is over 65 with probability 1.



Overfitting: Logistic Regression

Ten people searched for the following form:

This query is probably good evidence that 
someone is older than (or near) 65. 
Still: what if someone searched this who otherwise 
had hundreds of queries that suggested they were 
younger? They would still be classified >65 with 
probability 1. The probability 1 overrides other 
features in logistic regression.



Overfitting: Logistic Regression

There is also a computational problem when 
trying to make something have probability 1.
• Risk of overflowing if weights get too large.

Recall the logistic function:

ϕ(z) =    1
1 + e-z

z would have to be 
∞ (or -∞) in order 
to make ϕ(z) equal 
to 1 (or 0) 



Regularization
Regularization refers to the act of modifying a 
learning algorithm to favor “simpler” prediction 
rules to avoid overfitting.

Most commonly, regularization refers to 
modifying the loss function to penalize certain 
values of the weights you are learning.
• Specifically, penalize weights that are large.



Regularization
How do we define whether weights are large?

d(w, 0) = √ (wi)2 = ||w||

This is called the L2 norm of w
• A norm is a measure of a vector’s length
• Also called the Euclidean norm

i=1

k



Regularization
New goal for minimization: 

L(w; X) + λ ||w||2

This is whatever loss function 
we are using (for a dataset X) 



Regularization
New goal for minimization: 

L(w; X) + λ ||w||2

By minimizing this, we 
prefer solutions where 
w is closer to 0.
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root; easier to work with mathematically.



Regularization
New goal for minimization: 

L(w; X) + λ ||w||2

By minimizing this, we 
prefer solutions where 
w is closer to 0.

Why squared? It eliminates the square 
root; easier to work with mathematically.

λ is a hyperparameter that adjusts the 
tradeoff between having low training 
loss and having low weights.



Regularization
Regularization helps the computational problem 
because gradient descent won’t try to make 
some feature weights grow larger and larger…

At some point, the penalty of having too large 
||w||2 will outweigh whatever gain you would 
make in your loss function.
• In logistic regression, probably no practical difference 

whether your classifier predicts probability .99 or .9999 
for a label, but weights would need to be much larger 
to reach .9999.



Regularization
This also helps with generalization because it 
won’t give large weight to features unless there 
is sufficient evidence that they are useful

• The usefulness of a feature toward improving 
the loss has to outweigh the cost of having 
large feature weights



Regularization
More generally:

L(w; X) + λR(w)

This is called the regularization term 
or regularizer or penalty
• The squared L2 norm is one kind of 

penalty, but there are others

λ is called the regularization strength



L2 Regularization
When the regularizer is the squared L2 norm 
||w||2, this is called L2 regularization.

• This is the most common type of regularization
• When used with linear regression, this is called 

Ridge regression
• Logistic regression implementations usually 

use L2 regularization by default
• L2 regularization can be added to other algorithms 

like perceptron (or any gradient descent algorithm)



L2 Regularization
The function R(w) = ||w||2 is convex, so if it is 
added to a convex loss function, the combined 
function will still be convex.



L2 Regularization
How to choose λ? 
• You’ll play around with it in the homework, and we’ll 

also return to this later in the semester when we 
discuss hyperparameter optimization. 

Other common names for λ:
• alpha in sklearn
• C in many algorithms

• Usually C actually refers to the inverse regularization strength, 
1/λ

• Figure out which one your implementation is using 
(whether this will increase or decrease regularization)



L1 Regularization
Another common regularizer is the L1 norm:

||w||1 = |wj|

• Convex but not differential when wj = 0
• But 0 is a valid subgradient for gradient descent

• When used with linear regression, this is called 
Lasso
• Often results in many weights being exactly 0 

(while L2 just makes them small but nonzero)

j=1

k



L2+L1 Regularization
L2 and L1 regularization can be combined:

R(w) = λ2 ||w||2 + λ1 ||w||1

• Also called ElasticNet
• Can work better than either type alone
• Can adjust hyperparameters to control which of 

the two penalties is more important



Feature Normalization
The scale of the feature values matters when 
using regularization.
• If one feature has values between [0, 1] and another 

between [0, 10000], the learned weights might be on 
very different scales – but whatever weights are 
“naturally” larger are going to get penalized more by the 
regularizer.

Feature normalization or standardization refers 
to converting the values to a standard range.
• We’ll come back to this later in the semester.



Bias vs Variance
We learned about inductive bias at the start of 
the semester.

What exactly is bias?



Bias vs Variance
Remember: the goal of machine learning is to 
learn a function that can correctly predict all data 
it might hypothetically encounter in the world
• We don’t have access to all possible data, so we 

approximate this by doing well on the training data
• The training data is a sample of the true data



Bias vs Variance
When you estimate a parameter from a sample, the 
estimate is biased if the expected value of the 
parameter is different from the true value.

The expected value of the parameter is the theoretical 
average value of all the different parameters you would 
get from different samples.

Example: random sampling (e.g. in a poll) is unbiased
because if you repeated the sampling over and over, 
on average your answer would be correct (even though 
each individual sample might give a wrong answer).



Bias vs Variance
Regularization adds a bias because it 
systematically pushes your estimates in a 
certain direction (weights close to 0)

If the true weight for a feature should actually be 
large, you will consistently make a mistake by 
underestimating it, so on average your estimate 
will be wrong (therefore biased).



Bias vs Variance
The variance of an estimate refers to how much 
the estimate will vary from sample to sample.

If you consistently get the same parameter 
estimate regardless of what training sample you 
use, this parameter has low variance.



Bias vs Variance

Bias and variance both contribute to the 
error of your classifier.

• Variance is error due to randomness in how 
your training data was selected.
• Bias is error due to something systematic, 

not random.



Bias vs Variance

High bias
• Will learn similar functions even if given different 

training examples
• Prone to underfitting

High variance
• The learned function depends a lot on the specific 

data used to train
• Prone to overfitting

• Some amount of bias is needed to avoid overfitting. 
• Too much bias is bad, but too much variance is 

usually worse.



Summary

Regularization is really important!

It can make a big difference for getting good 
performance. You usually will want to tune the 
regularization strength when you build a classifier.


