
Logistic Regression
INFO-4604, Applied Machine Learning

University of Colorado Boulder

September 14, 2017
Prof. Michael Paul

Linear Classification
wTxi is the classifier score for the instance xi

The score can be used in different ways to make
a classification.
• Perceptron: output positive class if score is at

least 0, otherwise output negative class
• Today: output the probability that the instance

belongs to a class

Activation Function
An activation function for a linear classifier
converts the score to an output.

Denoted ϕ(z), where z refers to the score, wTxi

Activation Function
Perceptron uses a
threshold function:

ϕ(z) = 1, z ≥ 0
-1, z < 0

Activation Function

Logistic function:

ϕ(z) = 1
1 + e-z

The logistic function is a type of sigmoid function
(an S-shaped function)

Activation Function

Logistic function:

ϕ(z) = 1
1 + e-z

Outputs a real number between 0 and 1
Outputs 0.5 when z=0
Output goes to 1 as z goes to infinity
Output goes to 0 as z goes to negative infinity

Quick note on notation: exp(z) = ez

Logistic Regression
A linear classifier like perceptron that defines…
• Score: wTxi (same as perceptron)
• Activation: logistic function (instead of threshold)

This classifier gives you a value between 0 and 1,
usually interpreted as the probability that the
instance belongs to the positive class.
• Final classification usually defined to be the

positive class if the probability ≥ 0.5.

Logistic Regression
Confusingly:
This is a method for classification, not regression.

It is regression in that it is learning a function that
outputs continuous values (the logistic function),
BUT you are using those values to predict
discrete classes.

Logistic Regression
Considered a linear classifier, even though the
logistic function is not linear.

This is because the score is a linear function,
which is really what determines the output.

Learning
How do we learn the parameters w for logistic
regression?

Last time: need to define a loss function and
find parameters that minimize it.

Probability
Because logistic regression’s output is
interpreted as a probability, we are going to
define the loss function using probability.

For help with probability, review OpenIntro Stats,
Ch 2.

Probability
A conditional probability is the probability of a
random variable given that some variables are
known.

P(Y | X) is read as “the probability of Y given X”
or “the probability of Y conditioned on X”

The variable on the left hand side is what you
want to know the probability of.
The variable on the right-hand side is what you
know.

Probability
P(yi = 1 | xi) = ϕ(wTxi)
P(yi = 0 | xi) = 1 – ϕ(wTxi)

Goal for learning: learn w that makes the
labels in your training data more likely
• The probability of something you know to be true is 1,

so that’s what the probability should be of the labels in
your training data.

Note: the convention for logistic regression is
that the classes are 1 and 0 (instead of 1 and -1)

Learning
P(yi | xi) = ϕ(wTxi)yi * (1 – ϕ(wTxi))1–yi

Learning
P(yi | xi) = ϕ(wTxi)yi * (1 – ϕ(wTxi))1–yi

if yi = 1

Learning
P(yi | xi) = ϕ(wTxi)yi * (1 – ϕ(wTxi))1–yi

if yi = 0

Learning
P(yi | xi) = ϕ(wTxi)yi * (1 – ϕ(wTxi))1–yi

or

log P(yi | xi) = yi log(ϕ(wTxi)) + (1–yi) log(1–ϕ(wTxi))

Taking the logarithm (base e) of the probability
makes the math work out easier.

Learning
log P(yi | xi) = yi log(ϕ(wTxi)) + (1–yi) log(1–ϕ(wTxi))

This is the log of the probability of an instance’s
label yi given the instance’s feature vector xi

What about the probability of all the instances?

log P(yi | xi)

This is called the log-likelihood of the dataset.

i=1

N

Learning
Our goal was to define a loss function for logistic
regression. Let’s use log-likelihood… almost.

A loss function refers specifically to something you
want to minimize (that’s why it’s called “loss”), but
we want to maximize probability!

So let’s minimize the negative log-likelihood:

L(w) = -log P(yi | xi) = -yi log(ϕ(wTxi))
– (1–yi) log(1–ϕ(wTxi))i=1

N

i=1

N

Learning
We can use gradient descent to minimize the
negative log-likelihood, L(w)

The partial derivative of L with respect to wj is:

dL/dwj = xij (yi – ϕ(wTxi))
i=1

N

Learning
We can use gradient descent to minimize the
negative log-likelihood, L(w)

The partial derivative of L with respect to wj is:

dL/dwj = xij (yi – ϕ(wTxi))

if yi = 1…
The derivative will be 0 if ϕ(wTxi)=1
(that is, the probability that yi=1 is 1,

according to the classifier)

i=1

N

Learning
We can use gradient descent to minimize the
negative log-likelihood, L(w)

The partial derivative of L with respect to wj is:

dL/dwj = xij (yi – ϕ(wTxi))

if yi = 1…
The derivative will be positive
if ϕ(wTxi) < 1
(the probability was an underestimate)

i=1

N

Learning
We can use gradient descent to minimize the
negative log-likelihood, L(w)

The partial derivative of L with respect to wj is:

dL/dwj = xij (yi – ϕ(wTxi))

if yi = 0…
The derivative will be 0 if ϕ(wTxi)=0
(that is, the probability that yi=0 is 1,

according to the classifier)

i=1

N

Learning
We can use gradient descent to minimize the
negative log-likelihood, L(w)

The partial derivative of L with respect to wj is:

dL/dwj = xij (yi – ϕ(wTxi))

if yi = 0…
The derivative will be negative
if ϕ(wTxi) > 0
(the probability was an overestimate)

i=1

N

Learning
We can use gradient descent to minimize the
negative log-likelihood, L(w)

The partial derivative of L with respect to wj is:

dL/dwj = xij (yi – ϕ(wTxi))

So the gradient descent update for each wj is:

wj += η xij (yi – ϕ(wTxi))

i=1

N

i=1

N

Learning
So gradient descent is trying to…
• make ϕ(wTxi) = 1 if yi = 1
• make ϕ(wTxi) = 0 if yi = 0

But there’s a problem…

ϕ(z) = 1
1 + e-z

z would have to be
∞ (or -∞) in order
to make ϕ(z) equal
to 1 (or 0)

Learning
So gradient descent is trying to…
• make ϕ(wTxi) = 1 if yi = 1
• make ϕ(wTxi) = 0 if yi = 0

Instead, make
“close” to 1 or 0

Don’t want to optimize “too” much while running
gradient descent

Learning
So gradient descent is trying to…
• make ϕ(wTxi) = 1 if yi = 1
• make ϕ(wTxi) = 0 if yi = 0

Instead, make
“close” to 1 or 0

We can modify the loss function that basically
means, get as close to 1 or 0 as possible but
without making the w parameters too extreme.
• How? That’s for next time.

Learning

Remember from last time:
• Gradient descent
• Uses the full gradient

• Stochastic gradient descent (SGD)
• Uses an approximate of the gradient based on a

single instance
• Iteratively update the weights one instance at a time

Logistic regression can use either, but SGD
more common, and is usually faster.

Prediction
The probabilities give you an estimate of the
confidence of the classification.

Typically you classify something positive if
ϕ(wTxi) ≥ 0.5, but you could create other rules.
• If you don’t want to classify something as positive

unless you’re really confident, use ϕ(wTxi) ≥ 0.99
as your rule.

Example: spam classification
• Maybe worse to put a legitimate email in the spam

box than to put a spam email in the inbox
• Want high confidence before calling something spam

Other Disciplines

Logistic regression is used in other ways.
• Machine learning is focused on prediction

(outputting something you don’t know).
• Many disciplines is it as a tool to understand

relationships between variables.
What demographics are correlated with smoking?
Build a model that “predicts” if someone is a
smoker based on some variables
(e.g., age, education, income).
The parameters can tell you which variables
increase or decrease the likelihood of smoking.

