# Optimization and Gradient Descent 

INFO-4604, Applied Machine Learning University of Colorado Boulder

September 12, 2017
Prof. Michael Paul

## Prediction Functions

Remember: a prediction function is the function that predicts what the output should be, given the input.

## Prediction Functions

Linear regression:

$$
f(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}+b
$$

Linear classification (perceptron):

$$
f(\mathbf{x})=\left\{\begin{aligned}
1, & \mathbf{w}^{\top} \mathbf{x}+b \geq 0 \\
-1, & \mathbf{w}^{\top} \mathbf{x}+b<0
\end{aligned}\right.
$$

Need to learn what w should be!

## Learning Parameters

Goal is to learn to minimize error

- Ideally: true error
- Instead: training error

The loss function gives the training error when using parameters $\mathbf{w}$, denoted $\mathrm{L}(\mathbf{w})$.

- Also called cost function
- More general: objective function (in general objective could be to minimize or maximize; with loss/cost functions, we want to minimize)


## Learning Parameters

Goal is to minimize loss function.

How do we minimize a function?
Let's review some math.

## Rate of Change

The slope of a line is also called the rate of change of the line.

$$
y=1 / 2 x+1
$$



## Rate of Change

For nonlinear functions, the "rise over run" formula gives you the average rate of change between two points


Average slope from $x=-1$ to $x=0$ is:
-1

## Rate of Change

There is also a concept of rate of change at individual points (rather than two points)


## Rate of Change

The slope at a point is called the derivative at that point


Intuition:
Measure the slope between two points that are really close together

## Rate of Change

The slope at a point is called the derivative at that point
Intuition: Measure the slope between two points that are really close together

$$
\frac{f(x+c)-f(x)}{c}
$$

Limit as c goes to zero


## Maxima and Minima

Whenever there is a peak in the data, this is a maximum

The global maximum is the highest peak in the entire data set, or the largest $f(x)$ value the function can output

A local maximum is any peak, when the rate of change switches from positive to negative

## Maxima and Minima

Whenever there is a trough in the data, this is a minimum

The global minimum is the lowest trough in the entire data set, or the smallest $f(x)$ value the function can output

A local minimum is any trough, when the rate of change switches from negative to positive

## Maxima and Minima



From: https://www.mathsisfun.com/algebra/functions-maxima-minima.html
All global maxima and minima are also local maxima and minima

## Derivatives

The derivative of $f(x)=x^{2}$ is $2 x$
Other ways of writing this:

$$
\begin{aligned}
& f^{\prime}(x)=2 x \\
& d / d x\left[x^{2}\right]=2 x \\
& d f / d x=2 x
\end{aligned}
$$

The derivative is also a function! It depends on the value of $x$.

- The rate of change is different at different points


## Derivatives

The derivative of $f(x)=x^{2}$ is $2 x$
$f(x)$
$f^{\prime}(x)$



## Derivatives

How to calculate a derivative?

- Not going to do it in this class.

Some software can do it for you.

- Wolfram Alpha



## Derivatives

What if a function has multiple arguments?
$E x: f\left(x_{1}, x_{2}\right)=3 x_{1}+5 x_{2}$
$d f / d x_{1}=3+5 x_{2} \quad$ The derivative "with respect to" $x_{1}$ $d f / d x_{2}=3 x_{1}+5$ The derivative "with respect to" $x_{2}$
These two functions are called partial derivatives.
The vector of all partial derivatives for a function $f$ is called the gradient of the function:

$$
\nabla \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=<\mathrm{df} / \mathrm{dx} x_{1}, \mathrm{df} / \mathrm{dx}_{2}>
$$



$$
\theta=0
$$

$$
u=(-0.91,-0.42) \quad \nabla f(a)=(-1.81,-0.85) \quad\|\nabla f(\mathrm{a})\|=2.00
$$



| $\theta=0$ | $a=(-0.0,-3.0)$ | $D_{u} f(a)=1.11$ |
| :--- | :---: | ---: |
| $u=(0.15,0.99)$ | $\nabla f(a)=(0.17,1.09)$ | $\\|\nabla f(a)\\|=1.11$ |

From: http://mathinsight.org/directional derivative gradient introduction


$u=(-0.26,0.97)$
$a=(2.6,-1.0)$
$\nabla f(a)=(-0.56,2.07)$
$D_{u f}(a)=2.14$
$\|\nabla f(a)\|=2.14$

From: http://mathinsight.org/directional derivative gradient introduction

## Finding Minima

The derivative is zero at any local maximum or minimum.


## Finding Minima

The derivative is zero at any local maximum or minimum.

One way to find a minimum: set $f^{\prime}(x)=0$ and solve for x .
$f(x)=x^{2}$
$f^{\prime}(x)=2 x$
$f^{\prime}(x)=0$ when $x=0$, so minimum at $x=0$

## Finding Minima

The derivative is zero at any local maximum or minimum.

One way to find a minimum: set $f^{\prime}(x)=0$ and solve for $x$.

- For most functions, there isn't a way to solve this.
- Instead: algorithmically search different values of $x$ until you find one that results in a gradient near 0.


## Finding Minima

If the derivative is positive, the function is increasing.

- Don't move in that direction, because you'll be moving away from a trough.

If the derivative is negative, the function is decreasing.

- Keep going, since you're getting closer to a trough


## Finding Minima


$f^{\prime}(-1)=-2$
At $x=-1$, the function is decreasing as $x$ gets larger. This is what we want, so let's make x larger. Increase $x$ by the size of the gradient:

$$
-1+2=1
$$

## Finding Minima


$f^{\prime}(-1)=-2$
At $x=-1$, the function is decreasing as $x$ gets larger. This is what we want, so let's make x larger. Increase $x$ by the size of the gradient:

$$
-1+2=1
$$

## Finding Minima


$f^{\prime}(1)=2$
At $x=1$, the function is increasing as $x$ gets larger. This is not what we want, so let's make x smaller.
Decrease $x$ by the size of the gradient:

$$
1-2=-1
$$

## Finding Minima


$f^{\prime}(1)=2$
At $x=1$, the function is increasing as $x$ gets larger. This is not what we want, so let's make x smaller.
Decrease $x$ by the size of the gradient:

$$
1-2=-1
$$

## Finding Minima



We will keep jumping between the same two points this way.

We can fix this be using a learning rate or step size.

## Finding Minima



## Finding Minima



$$
\begin{aligned}
& f^{\prime}(-1)=-2 \\
& x+=2 \eta=
\end{aligned}
$$

Let's use $\eta=0.25$.

## Finding Minima



$$
\begin{aligned}
& f^{\prime}(-1)=-2 \\
& x=-1+2(.25)=-0.5
\end{aligned}
$$

## Finding Minima



$$
\begin{aligned}
& f^{\prime}(-1)=-2 \\
& x=-1+2(.25)=-0.5 \\
& f^{\prime}(-0.5)=-1 \\
& x=-0.5+1(.25)=-0.25
\end{aligned}
$$

## Finding Minima



$$
\begin{aligned}
& f^{\prime}(-1)=-2 \\
& x=-1+2(.25)=-0.5 \\
& f^{\prime}(-0.5)=-1 \\
& x=-0.5+1(.25)=-0.25 \\
& f^{\prime}(-0.25)=-0.5 \\
& x=-0.25+0.5(.25)=-0.125
\end{aligned}
$$

## Finding Minima



$$
\begin{aligned}
& f^{\prime}(-1)=-2 \\
& x=-1+2(.25)=-0.5 \\
& f^{\prime}(-0.5)=-1 \\
& x=-0.5+1(.25)=-0.25 \\
& f^{\prime}(-0.25)=-0.5 \\
& x=-0.25+0.5(.25)=-0.125
\end{aligned}
$$

Eventually we'll reach $x=0$.

## Gradient Descent

1. Initialize the parameters $\mathbf{w}$ to some guess (usually all zeros, or random values)
2. Update the parameters:

$$
\mathbf{w}=\mathbf{w}-\eta \nabla \mathrm{L}(\mathbf{w})
$$

3. Update the learning rate $\eta$ (How? Later...)
4. Repeat steps 2-3 until $\nabla \mathrm{L}(\mathbf{w})$ is close to zero.

## Gradient Descent

Gradient descent is guaranteed to eventually find a local minimum if:

- the learning rate is decreased appropriately;
- a finite local minimum exists (i.e., the function doesn't keep decreasing forever).


## Gradient Ascent

What if we want to find a local maximum?

Same idea, but the update rule moves the parameters in the opposite direction:

$$
\mathbf{w}=\mathbf{w}+\eta \nabla \mathrm{L}(\mathbf{w})
$$

## Learning Rate

In order to guarantee that the algorithm will converge, the learning rate should decrease over time. Here is a general formula.

At iteration t :
$\eta_{t}=c_{1} /\left(t^{a}+c_{2}\right)$,
where $0.5<\mathrm{a}<2$
c1 $>0$
$c 2 \geq 0$

## Stopping Criteria

For most functions, you probably won't get the gradient to be exactly equal to 0 in a reasonable amount of time.

Once the gradient is sufficiently close to $\mathbf{0}$, stop trying to minimize further.

How do we measure how close a gradient is to $\mathbf{0}$ ?

## Distance

A special case is the distance between a point and zero (the origin).
$d(\mathbf{p}, \mathbf{0})=\sqrt{\sum_{i=1}^{\mathrm{k}}\left(\mathrm{p}_{\mathrm{i}}\right)^{2}}$
This is called the Euclidean norm of $\mathbf{p}$

- A norm is a measure of a vector's length
- The Euclidean norm is also called the L2 norm


## Distance

A special case is the distance between a point and zero (the origin).
$d(\mathbf{p}, \mathbf{0})=\sqrt{\sum_{i=1}^{k}\left(p_{i}\right)^{2}}$
Also written: Ilpl|

## Stopping Criteria

Stop when the norm of the gradient is below some threshold, $\theta$ :

$$
\|\nabla L(\mathbf{w})\|<\theta
$$

Common values of $\theta$ are around .01 , but if it is taking too long, you can make the threshold larger.

## Gradient Descent

1. Initialize the parameters w to some guess (usually all zeros, or random values)
2. Update the parameters:

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}-\eta \nabla \mathrm{L}(\mathbf{w}) \\
\eta & =\mathrm{c}_{1} /\left(\mathrm{t}^{\mathrm{a}}+\mathrm{c}_{2}\right)
\end{aligned}
$$

3. Repeat step 2 until $\|\nabla \mathrm{L}(\mathbf{w})\|<\theta$ or until the maximum number of iterations is reached.

## Revisiting Perceptron

In perceptron, you increase the weights if they were an underestimate and decrease if they were an overestimate.

$$
\mathrm{w}_{\mathrm{j}}+=\eta\left(\mathrm{y}_{\mathrm{i}}-\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\right) \mathrm{x}_{\mathrm{ij}}
$$

This looks similar to the gradient descent rule.

- Is it? We'll come back to this.


## Adaline

Similar algorithm to perceptron (but uncommon):

Predictions use the same function:

$$
f(\mathbf{x})=\left\{\begin{array}{rr}
1, & \mathbf{w}^{\top} \mathbf{x} \geq 0 \\
-1, & \mathbf{w}^{\top} \mathbf{x}<0
\end{array}\right.
$$

(here the bias b is folded into the weight vector $\mathbf{w}$ )

## Adaline

Perceptron minimizes the number of errors.
Adaline instead tries to make $\mathbf{w}^{\top} \mathbf{x}$ close to the correct value ( 1 or -1 , even though $\mathbf{w}^{\top} \mathbf{x}$ can be any real number).

Loss function for Adaline:
$L(\mathbf{w})=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{y}_{\mathrm{i}}-\mathbf{w}^{\top} \mathbf{x}_{\mathrm{i}}\right)^{2}$
This is called the squared error. (Actually this is the same loss function used for linear regression.)

## Adaline

What is the derivative of the loss?

$$
\begin{aligned}
& L(\mathbf{w})=\sum_{i=1}^{N}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right)^{2} \\
& d L / d w_{j}=\sum_{i=1}^{N}-2 x_{i j}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right)
\end{aligned}
$$

## Adaline

The gradient descent algorithm for Adaline updates each feature weight using the rule:

$$
w_{j}+=\eta \sum_{i=1}^{N} 2 x_{i j}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{\mathrm{i}}\right)
$$

Two main differences from perceptron:

- $\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)$ is a real value, instead of a binary value (perceptron either correct or incorrect)
- The update is based on the entire training set, instead of one instance at a time.


## Adaline

The gradient descent algorithm for Adaline updates each feature weight using the rule:

$$
w_{j}+=\eta \sum_{i=1}^{N} 2 x_{i j}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{\mathrm{i}}\right)
$$

Two main differences from perceptron:

- $\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)$ is a real value, instead of a binary value (perceptron either correct or incorrect)
- The update is based on the entire training set, instead of one instance at a time.


## Stochastic Gradient Descent

A variant of gradient descent makes updates using an approximate of the gradient that is only based on one instance at a time.

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{i}}(\mathbf{w})=\left(\mathrm{y}_{\mathrm{i}}-\mathbf{w}^{\top} \mathbf{x}_{\mathrm{i}}\right)^{2} \\
& \mathrm{dL} / \mathrm{L}_{\mathrm{i}} / \mathrm{w}_{\mathrm{j}}=-2 \mathrm{x}_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{i}}-\mathbf{w}^{\top} \mathbf{x}_{\mathrm{i}}\right)
\end{aligned}
$$

## Stochastic Gradient Descent

General algorithm for SGD:

1. Iterate through the instances in a random order
a) For each instance $x_{i}$, update the weights based on the gradient of the loss for that instance only:

$$
\mathbf{w}=\mathbf{w}-\eta \nabla \mathrm{L}_{\mathrm{i}}\left(\mathbf{w} ; \mathbf{x}_{\mathbf{i}}\right)
$$

The gradient for one instance's loss is an approximation to the true gradient

- stochastic = random

The expected gradient is the true gradient

## Adaline

The gradient descent algorithm for Adaline updates each feature weight using the rule:

$$
\mathrm{w}_{\mathrm{j}}+=\eta \sum_{\mathrm{i}=1}^{\mathrm{N}} 2 \mathrm{x}_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{i}}-\mathbf{w}^{\top} \mathbf{x}_{\mathrm{i}}\right)
$$

Two main differences from perceptron:

- $\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{\mathrm{i}}\right)$ is a real value, instead of a binary value (perceptron either correct or incorrect)
- The update is based on the entire training set, instead of one instance at a time.


## Revisiting Perceptron

Perceptron has a different loss function:

$$
L_{i}\left(\mathbf{w} ; \mathbf{x}_{i}\right)= \begin{cases}0, & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right) \geq 0 \\ -y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right), & \text { otherwise }\end{cases}
$$



## Revisiting Perceptron

Perceptron has a different loss function:

$$
L_{i}\left(\mathbf{w} ; \mathbf{x}_{\mathbf{i}}\right)= \begin{cases}0, & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right) \geq 0 \\ -\mathrm{y}_{\mathrm{i}}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right), & \text { otherwise }\end{cases}
$$

The derivative here is 0 . No gradient descent updates if the prediction was correct.

## Revisiting Perceptron

Perceptron has a different loss function:

$$
L_{i}\left(\mathbf{w} ; \mathbf{x}_{i}\right)= \begin{cases}0, & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right) \geq 0 \\ -y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right), & \text { otherwise }\end{cases}
$$



The derivative here is $-y_{i} \mathrm{x}_{\mathrm{ij}}$. If $x_{i j}$ is positive, $\mathrm{dL}_{\mathrm{i}} / \mathrm{w}_{\mathrm{j}}$ will be negative when $y_{i}$ is positive, so the gradient descent update will be positive.

## Revisiting Perceptron

Perceptron has a different loss function:

$$
L_{i}\left(\mathbf{w} ; \mathbf{x}_{\mathbf{i}}\right)= \begin{cases}0, & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right) \geq 0 \\ -\mathrm{y}_{\mathrm{i}}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right), & \text { otherwise }\end{cases}
$$



The derivative here is $-y_{i} x_{i j}$. If $x_{i j}$ is positive, $\mathrm{dL}_{\mathrm{i}} / \mathrm{w}_{\mathrm{j}}$ will be negative when $y_{i}$ is positive, so the gradient descent update will be positive.

## Revisiting Perceptron

Perceptron has a different loss function:

$$
L_{i}\left(\mathbf{w} ; \mathbf{x}_{i}\right)= \begin{cases}0, & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right) \geq 0 \\ -y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right), & \text { otherwise }\end{cases}
$$



The derivative here is $-\mathrm{y}_{\mathrm{i}} \mathrm{x}_{\mathrm{ij}}$. If $x_{i j}$ is positive, $\mathrm{dL}_{\mathrm{i}} / \mathrm{w}_{\mathrm{j}}$ will be positive when $y_{i}$ is negative, so the gradient descent update will be negative.

## Revisiting Perceptron

Perceptron has a different loss function:

$$
L_{i}\left(\mathbf{w} ; \mathbf{x}_{i}\right)= \begin{cases}0, & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right) \geq 0 \\ -y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right), & \text { otherwise }\end{cases}
$$



The derivative doesn't actually exist at this point (the function isn't smooth)

## Revisiting Perceptron

Perceptron has a different loss function:

$$
L_{i}\left(\mathbf{w} ; \mathbf{x}_{\mathbf{i}}\right)= \begin{cases}0, & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right) \geq 0 \\ -y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right), & \text { otherwise }\end{cases}
$$



A subgradient is a generalization of the gradient for points that are not differentiable.

0 and $-y_{i} \mathrm{x}_{\mathrm{ij}}$ are both valid subgradients at this point.

## Revisiting Perceptron

Perceptron has a different loss function:

$$
L_{i}\left(\mathbf{w} ; \mathbf{x}_{i}\right)= \begin{cases}0, & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{\mathbf{i}}\right) \geq 0 \\ -y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right), & \text { otherwise }\end{cases}
$$

Perceptron is a stochastic gradient descent algorithm using this loss function (and using the subgradient instead of gradient)

## Convexity

How do you know if you've found the global minimum, or just a local minimum?

A convex function has only one minimum:


## Convexity

How do you know if you've found the global minimum, or just a local minimum?

A convex function has only one minimum:


## Convexity

A concave function has only one maximum:



Sometimes people use "convex" to mean either convex or concave

## Convexity

Squared error is a convex loss function, as is the perceptron loss.

## Summary

Most machine learning algorithms are some combination of a loss function + an algorithm for finding a local minimum.

- Gradient descent is a common minimizer, but there are others.

With most of the common classification algorithms, there is only one global minimum, and gradient descent will find it.

- Though this isn't always true.


## Summary

1. Initialize the parameters $\mathbf{w}$ to some guess (usually all zeros, or random values)
2. Update the parameters:

$$
\begin{aligned}
\mathbf{w} & =\mathbf{w}-\eta \nabla \mathrm{L}(\mathbf{w}) \\
\eta & =\mathrm{c}_{1} /\left(\mathrm{t}^{\mathrm{a}}+\mathrm{c}_{2}\right)
\end{aligned}
$$

3. Repeat step 2 until $\|\nabla \mathrm{L}(\mathbf{w})\|<\theta$ or until the maximum number of iterations is reached.
