
Linear Classification
and Perceptron

INFO-4604, Applied Machine Learning
University of Colorado Boulder

September 7, 2017
Prof. Michael Paul

Prediction Functions
Remember: a prediction function is the
function that predicts what the output should be,
given the input

Last time we looked at linear functions, which
are commonly used as prediction functions.

Linear Functions
General form with k variables (arguments):

f(x1,…,xk) = mixi + b

or equivalently:

f(x) = mTx + b

i=1

k

Linear Predictions
Regression:

Linear Predictions
Classification:

Learn a linear function that separates instances of
different classes

Linear Classification

A linear function divides the coordinate
space into two parts.
• Every point is either on one side of the line (or

plane or hyperplane) or the other.
• Unless it is exactly on the line… we’ll come back to

this case in a minute.
• This means it can only separate two classes.
• Classification with two classes is called binary

classification.
• Conventionally, one class is called the positive

class and the other is the negative class.
• We’ll discuss classification with >2 classes later on.

Perceptron
Perceptron is an algorithm for binary classification
that uses a linear prediction function:

f(x) = 1, wTx + b ≥ 0
-1, wTx + b < 0

This is called a step function, which reads:
• the output is 1 if “wTx + b ≥ 0” is true, and the

output is -1 if instead “wTx + b < 0” is true

Perceptron
Perceptron is an algorithm for binary classification
that uses a linear prediction function:

f(x) = 1, wTx + b ≥ 0
-1, wTx + b < 0

By convention, the two classes are +1 or -1.

Perceptron
Perceptron is an algorithm for binary classification
that uses a linear prediction function:

f(x) = 1, wTx + b ≥ 0
-1, wTx + b < 0

By convention, the slope parameters are denoted w
(instead of m as we used last time).
• Often these parameters are called weights.

Perceptron
Perceptron is an algorithm for binary classification
that uses a linear prediction function:

f(x) = 1, wTx + b ≥ 0
-1, wTx + b < 0

By convention, ties are broken in favor of the
positive class.
• If “wTx + b” is exactly 0, output +1 instead of -1.

Perceptron
The w parameters are unknown. This is what we
have to learn.

f(x) = 1, wTx + b ≥ 0
-1, wTx + b < 0

In the same way that linear regression learns the
slope parameters to best fit the data points,
perceptron learns the parameters to best separate
the instances.

Example
Suppose we want to predict whether a web user
will click on an ad for a refrigerator

Four features:
• Recently searched “refrigerator repair”
• Recently searched “refrigerator reviews”
• Recently bought a refrigerator
• Has clicked on any ad in the recent past

These are all binary features
(values can be either 0 or 1)

Example
Suppose these are
the weights:

Searched “repair” 2.0
Searched “reviews” 8.0
Recent purchase -15.0
Clicked ads before 5.0
b (intercept) -9.0

Prediction function:
f(x) = 1, wTx + b ≥ 0

-1, wTx + b < 0

Example
Suppose these are
the weights:

Searched “repair” 2.0
Searched “reviews” 8.0
Recent purchase -15.0
Clicked ads before 5.0
b (intercept) -9.0

wTx + b =
2*0 + 8*1 + -15*0 + 5*0 + -9 =
8 – 9 = -1

Prediction:
No

Example
Suppose these are
the weights:

Searched “repair” 2.0
Searched “reviews” 8.0
Recent purchase -15.0
Clicked ads before 5.0
b (intercept) -9.0

wTx + b =
2 + 8 – 9 = 1

Prediction:
Yes

Example
Suppose these are
the weights:

Searched “repair” 2.0
Searched “reviews” 8.0
Recent purchase -15.0
Clicked ads before 5.0
b (intercept) -9.0

wTx + b =
8 + 5 – 9 = 4

Prediction:
Yes

Example
Suppose these are
the weights:

Searched “repair” 2.0
Searched “reviews” 8.0
Recent purchase -15.0
Clicked ads before 5.0
b (intercept) -9.0

wTx + b =
8 – 15 + 5 – 9 = -11

Prediction:
No

If someone bought a refrigerator recently, they probably
aren’t interested in shopping for another one anytime soon

Example
Suppose these are
the weights:

Searched “repair” 2.0
Searched “reviews” 8.0
Recent purchase -15.0
Clicked ads before 5.0
b (intercept) -9.0

wTx + b =
-9

Prediction:
No

Since most people don’t click ads, the “default” prediction is
that they will not click (the intercept pushes it negative)

Learning the Weights
The perceptron algorithm learns the weights by:
1. Initialize all weights w to 0
2. Iterate through the training data. For each

training instance, classify the instance.
a) If the prediction (the output of the classifier) was

correct, don’t do anything. (It means the classifier
is working, so leave it alone!)

b) If the prediction was wrong, modify the weights by
using the update rule.

3. Repeat step 2 some number of times (more
on this later).

Learning the Weights
What does an update rule do?

• If the classifier predicted an instance was
negative but it should have been positive…

Currently: wTxi + b < 0
Want: wTxi + b ≥ 0
• Adjust the weights w so that this function value

moves toward positive
• If the classifier predicted positive but it should

have been negative, shift the weights so that the
value moves toward negative.

Learning the Weights
The perceptron
update rule:
wj += (yi – f(xi)) xij

wj The	 weight	 of	 feature	 j
yi The	 true	 label	 of	 instance	 i
xi The	 feature vector	 of	 instance	 i
f(xi) The	 class	 prediction	 for instance	 i
xij The	 value	 of	 feature	 j	 in	 instance	 i

Learning the Weights
The perceptron
update rule:
wj += (yi – f(xi)) xij

Let’s assume xij is 1 in this example for now.

wj The	 weight	 of	 feature	 j
yi The	 true	 label	 of	 instance	 i
xi The	 feature vector	 of	 instance	 i
f(xi) The	 class	 prediction	 for instance	 i
xij The	 value	 of	 feature	 j	 in	 instance	 i

Learning the Weights
The perceptron
update rule:
wj += (yi – f(xi)) xij

This term is 0 if the prediction was correct (yi = f(xi)).
• Then the entire update rule is 0, so no change is made.

wj The	 weight	 of	 feature	 j
yi The	 true	 label	 of	 instance	 i
xi The	 feature vector	 of	 instance	 i
f(xi) The	 class	 prediction	 for instance	 i
xij The	 value	 of	 feature	 j	 in	 instance	 i

Learning the Weights
The perceptron
update rule:
wj += (yi – f(xi)) xij

If the prediction is wrong:
• This term is +2 if yi = +1 and f(xi) = -1.
• This term is -2 if yi = -1 and f(xi) = +1.
The sign of this term indicates the direction of the
mistake.

wj The	 weight	 of	 feature	 j
yi The	 true	 label	 of	 instance	 i
xi The	 feature vector	 of	 instance	 i
f(xi) The	 class	 prediction	 for instance	 i
xij The	 value	 of	 feature	 j	 in	 instance	 i

Learning the Weights
The perceptron
update rule:
wj += (yi – f(xi)) xij

If the prediction is wrong:
• The (yi – f(xi)) term is +2 if yi = +1 and f(xi) = -1.
• This will increase wj (still assuming xij is 1)…
• …which will increase wTxi + b…
• …which will make it more likely wTxi + b ≥ 0 next time

(which is what we need for the classifier to be correct).

wj The	 weight	 of	 feature	 j
yi The	 true	 label	 of	 instance	 i
xi The	 feature vector	 of	 instance	 i
f(xi) The	 class	 prediction	 for instance	 i
xij The	 value	 of	 feature	 j	 in	 instance	 i

Learning the Weights
The perceptron
update rule:
wj += (yi – f(xi)) xij

If the prediction is wrong:
• The (yi – f(xi)) term is -2 if yi = -1 and f(xi) = +1.
• This will decrease wj (still assuming xij is 1)…
• …which will decrease wTxi + b…
• …which will make it more likely wTxi + b < 0 next time

(which is what we need for the classifier to be correct).

wj The	 weight	 of	 feature	 j
yi The	 true	 label	 of	 instance	 i
xi The	 feature vector	 of	 instance	 i
f(xi) The	 class	 prediction	 for instance	 i
xij The	 value	 of	 feature	 j	 in	 instance	 i

Learning the Weights
The perceptron
update rule:
wj += (yi – f(xi)) xij

If xij is 0, there will be no update.
• The feature does not affect the prediction for this instance,

so it won’t affect the weight updates.
If xij is negative, the sign of the update flips.

wj The	 weight	 of	 feature	 j
yi The	 true	 label	 of	 instance	 i
xi The	 feature vector	 of	 instance	 i
f(xi) The	 class	 prediction	 for instance	 i
xij The	 value	 of	 feature	 j	 in	 instance	 i

Learning the Weights
What about b?
• This is the intercept of the linear function, also called

the bias.

Common implementation:
Realize that: wTx + b = wTx + b*1.
• If we add an extra feature to every instance whose

value is always 1, then we can simply write this as wTx,
where the final feature weight is the value of the bias.
• Then we can update this parameter the same way as

all the other weights.

Learning the Weights
The vector of w values is called the
weight vector.

Is the bias b counted when we use this phrase?
• Usually… especially if you include it by using the

trick of adding an extra feature with value 1 rather
than treating it separately.
• Just be clear with your notation.

Linear Separability
The training instances are linearly separable if
there exists a hyperplane that will separate the
two classes.

Linear Separability
If the training instances are linearly separable,
eventually the perceptron algorithm will find
weights w such that the classifier gets
everything correct.

Linear Separability
If the training instances are not linearly
separable, the classifier will always get some
predictions wrong.
• You need to implement some type of stopping criteria

for when the algorithm will stop making updates, or it
will run forever.
• Usually this is specified by running the algorithm for a

maximum number of iterations or epochs.

Learning Rate
Let’s make a modification to the update rule:

wj += η (yi – f(xi)) xij

where η is called the learning rate or step size.
• When you update wj to be more positive or

negative, this controls the size of the change you
make (or, how large a “step” you take).
• If η=1 (a common value), then this is the same

update rule from the earlier slide.

Learning Rate

How to choose the step size?
• If η is too small, the algorithm will be slow

because the updates won’t make much progress.

• If η is too large, the algorithm will be slow
because the updates will “overshoot” and may
cause previously correct classifications to
become incorrect.

We’ll learn about step sizes a little more next week.

Summary

Perceptron: Prediction
Prediction function:

f(x) = 1, wTx + b ≥ 0
-1, wTx + b < 0

Perceptron: Learning
1. Initialize all weights w to 0.
2. Iterate through the training data. For each

training instance, classify the instance.
a) If the prediction (the output of the classifier) was

correct, don’t do anything.
b) If the prediction was wrong, modify the weights by

using the update rule:

3. Repeat step 2 until the perceptron correctly
classifiers every instance or the maximum
number of iterations has been reached.

wj += η (yi – f(xi)) xij

