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Goals

• In the intro lecture, every visualization 
was in 2D
• What happens when we have more dimensions?

• Vectors and data points
• What does a feature vector look like geometrically?
• How to calculate the distance between points?
• Definitions: vector products and linear functions



Two new algorithms today

• K-nearest neighbors classification
• Label an instance with the most common label 

among the most similar training instances
• K-means clustering
• Put instances into clusters to which they are closest 

(in a geometric space)

Both require a way to measure the 
similarity/distance between instances



Linear Regression
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General form of a line:

f(x) = mx + b

slope

intercept y = ½x + 1
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Linear Functions

General form of a line:

f(x) = mx + b

slope

intercept y = ½x + 1

“run”

“rise”

= “rise over run”



Linear Functions

General form of a line:

f(x) = mx + b

slope

intercept m and b are called 
parameters
• They are constant 

(once specified)
• Also called coefficients

x is the argument of the 
function
• It is the input to the function



Linear Functions

Machine learning involves learning the 
parameters of the predictor function

In linear regression, the predictor function 
is a linear function
• But the parameters are unknown ahead of time
• Goal is to learn what the slope and intercept should be

(How to do that is a question we’ll answer next week)



Linear Functions

Linear functions can have more 
than one argument

f(x1,x2) = m1x1 + m2x2 + b

y = 2x1 + 2x2 + 5

From:	  https://www.math.uri.edu/~bkaskosz/flashmo/graph3d/

• One variable: line
• Two variables: plane



Linear Regression

• Two input variables 
(want to predict third)

• Fit a plane to the points



Linear Functions

General form of linear functions:

f(x1,…,xk) =      mixi + b

• One variable: line
• Two variables: plane
• In general: hyperplane

i=1

k



Linear Regression
How much will Mario Kart (Wii) sell for on eBay?   
(example from OpenIntro Stats, Ch 8)



Linear Regression
How much will Mario Kart (Wii) sell for on eBay?   
(example from OpenIntro Stats, Ch 8)

Four features:



Linear Regression
f(x) =   5.13 cond_new + 1.08 stock_photo

– 0.03 duration + 7.29 wheels + 36.21

If you know the values of the four features, 
you can get a guess of the output (price) by 
plugging them into this function



Linear Functions
f(x1,…,xk) =      mixi + b

f(x) =   5.13 cond_new + 1.08 stock_photo
– 0.03 duration + 7.29 wheels + 36.21

Mapping this to the general form…
x1 = cond_new m1 = 5.13 k = 4
x2 = stock_photo m2 = 1.08
x3 = duration m3 = -0.03
x4 = wheels m4 = 7.29 b = 36.21

i=1

k



Vector Notation
A list of values is called a vector
We can use variables to denote entire vectors as 
shorthand

m = <m1, m2, m3, m4> 
x = <x1, x2, x3, x4> 



Vector Notation
The dot product of two vectors is written as
mTx or m•x, which is defined as:

mTx =      mixi

Example:
m = <5.13, 1.08, -0.03, 7.29> 
x =  <x1, x2, x3, x4> 
mTx = 5.13x1 + 1.08x2 – 0.03x3 + 7.29x4

i=1

k



Vector Notation
Equivalent notation for a linear function:

f(x1,…,xk) =      mixi + b

or

f(x) = mTx + b

i=1

k



Vector Notation
Terminology:
A point is the same as a vector
(at least as used in this class)



Vector Notation
Remember:
In machine learning, the number of dimensions in 
your points/vectors is the number of features



Pause



Distance

How far apart are two points?



Distance

Euclidean distance between two points 
in two dimensions:

√(x2 – x1)2 + (y2 – y1)2

In three dimensions (x,y,z):
√(x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2



Distance

General formulation of Euclidean distance 
between two points with k dimensions:

d(p, q) = √ (pi – qi)2

where p and q are the two points 
(each represents a k-dimensional vector)

i=1

k



Distance

Example:
p = <1.3, 5.0, -0.5, -1.8>
q = <1.8, 5.0, 0.1, -2.3>

d(p, q) = sqrt( (1.3–1.8)2 + (5.0–5.0)2

+ (-0.5–0.1)2 + (-1.8–-2.3)2 )
= sqrt(.86)
= .927



Distance

A special case is the distance between a 
point and zero (the origin).

d(p, 0) = √ (pi)2

This is called the Euclidean norm of p
• A norm is a measure of a vector’s length
• The Euclidean norm is also called the L2 norm
• We’ll learn about other norms later

i=1

k



Distance-based Prediction

Suppose you have 
these 20 instances,
labeled with one of two 
classes (blue or green)



Distance-based Prediction

You have a new 
instance but don’t 
know the class label.

?



Distance-based Prediction

You have a new 
instance but don’t 
know the class label.

?

One heuristic:
Label it with the label 
of the nearest point.



Distance-based Prediction

Sometimes the nearest 
point doesn’t provide a 
great estimate. 

?
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Distance-based Prediction

Sometimes the nearest 
point doesn’t provide a 
great estimate. 

?

Another heuristic:
Compare it to the 
nearest five points.



Distance-based Prediction

Sometimes the nearest 
point doesn’t provide a 
great estimate. 

?

Another heuristic:
Compare it to the 
nearest five points.

4 votes for green
1 vote for blue



Distance-based Prediction

The k-nearest neighbors (kNN) algorithm 
classifies an instance as follows:

1. Find the k labeled instances that have the 
lowest distance to the unlabeled instance

2. Return the majority class (most common 
label) in the set of k nearest instances

Can also be used for regression instead of 
classification (but less common)
• Replace “majority class” in step 2 above 

with “average value”



Distance-based Prediction

When you run the kNN algorithm, you 
have to decide what k should be.

Mostly an empirical question; trial and 
error experimentally.
• If k is too small, prediction will sensitive to 

noise.
• If k is too large, algorithm loses the local 

context that makes it work.



Distance-based Prediction

Common variant of kNN: 
weigh the nearest neighbors by their distance
• (e.g., when calculating the majority class, give 

more votes to the instances that are closest)



k-means Clustering



k-means Clustering

Suppose we want to 
cluster these 20 instances 
into 2 groups



k-means Clustering

Suppose we want to 
cluster these 20 instances 
into 2 groups

One way to start:
Randomly assign 
two of the points 
to clusters



k-means Clustering

Suppose we want to 
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into 2 groups

Then assign every 
point to the cluster 
corresponding to 
whichever of the two 
points it is closer to



k-means Clustering
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point to the cluster 
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points it is closer to



k-means Clustering

Define the center of each 
cluster as the mean of all 
the points in the cluster.
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k-means Clustering

Define the center of each 
cluster as the mean of all 
the points in the cluster.

Now assign every 
point to the cluster 
corresponding to 
whichever of the two 
centers it is closer to



k-means Clustering

Repeat.



k-means Clustering

Repeat. Recalculate the means.



k-means Clustering

Repeat. Recalculate the means.
Reassign the points.



k-means Clustering

Repeat.



k-means Clustering

Repeat. Recalculate the means.



k-means Clustering

Repeat. Recalculate the means.
Reassign the points.



k-means Clustering

Stop once the cluster 
assignments don’t change.



k-means Clustering
1. Initialize the cluster means
2. Repeat until assignments stop changing:

a) Assign each instance to the cluster whose mean 
is nearest to the instance

b) Update the cluster means based on the new 
cluster assignments:

where Si is the set of instances in cluster i,
and |Si | is the number of instances in the cluster.



k-means Clustering
How to initialize? Two common approaches:
• Randomly assign each instance to a cluster and 

calculate the means.
• Pick k points at random and treat them as the 

cluster means.
• This is the approach used in the illustration in the 

previous slides.
• This approach generally works better than the 

previous approach (leads to initial cluster means 
that are more spread out)

Note that both of these approaches involve 
randomness and will not always lead to the 
same solution each time!



k-means Clustering
How to choose k? Similar challenge as in k-NN.

Usually trial-and-error + some intuition about 
what the dataset looks like.

Some clustering algorithms can automatically 
figure out the number of clusters.
• Also based on distance. 
• General idea: if points within a cluster are still far apart, 

the cluster should probably be split into more clusters.



Recap
Both k-NN and k-means require some definition 
of distance between points.
• Euclidean distance most common.
• There are lots of others 

(many implemented in sklearn)

While the illustrations had only two dimensions, 
the algorithms apply to any number of 
dimensions, using the definition of Euclidean 
distance that we learned today.


