
Generative Clustering,
Topic Modeling, &

Bayesian Inference
INFO-4604, Applied Machine Learning

University of Colorado Boulder

December 12-14, 2017
Prof. Michael Paul

Unsupervised Naïve Bayes
Last week you saw how Naïve Bayes can be
used in semi-supervised or unsupervised settings
• Learn parameters with the EM algorithm

Unsupervised Naïve Bayes is considered a type
of topic model when used for text data
• Learns to group documents into different categories,

referred to as “topics”
• Instances are documents; features are words

Today’s focus is text, but ideas can be applied to
other types of data

Topic Models
Topic models are used to find common patterns in
text datasets
• Method of exploratory analysis
• For understanding data rather than prediction

(though sometimes also useful for prediction –
we’ll see at the end of this lecture)

Unsupervised learning means that it can provide
analysis without requiring a lot of input from a user

Topic Models

From	 Talley	 et	 al	 (2011)

Topic Models

From	 Nguyen	 et	 al	 (2013)

Topic Models

From	 Ramage et	 al	 (2010)

Unsupervised Naïve Bayes
Naïve Bayes is not often used as a topic model
• We’ll learn more common, more complex models

today
• But let’s start by reviewing it, and then build off the

same ideas

Generative Models
When we introduced generative models, we said
that they can also be used to generate data

Generative Models
How would you use Naïve Bayes to randomly
generate a document?

First, randomly pick a category, Y Z
• Notation convention to use Z for latent categories in

unsupervised modeling instead of Y (since Y often implies
it is a known value you are trying to predict)
• The category should be randomly sampled according to

the prior distribution, P(Z)

Generative Models
How would you use Naïve Bayes to randomly
generate a document?

First, randomly pick a category, Z
Then, randomly pick words
• Sampled according to the distribution, P(W | Z)

These steps are known as the generative process
for this model

Generative Models
How would you use Naïve Bayes to randomly
generate a document?

This process won’t result in a coherent document
• But, the words in the document are likely to be

semantically/topically related to each other, since
P(W | Z) will give high probability to words that are
common in the particular category

Generative Models
Another perspective on learning:
If you assume that the “generative process” for a
model is how the data was generated, then work
backwards and ask:
• What are the probabilities that most likely would

have generated the data that we observe?

The generative process is almost always overly
simplistic
• But it can still be a way to learn something useful

Generative Models
With unsupervised learning, the same approach
applies
• What are the probabilities that most likely would

have generated the data that we observe?
• If we observe similar patterns across multiple

documents, those documents are likely to have
been generated from the same latent category

Naïve Bayes
Let’s first review (unsupervised) Naïve Bayes
and Expectation Maximization (EM)

Naïve Bayes
Learning probabilities in Naïve Bayes:

P(Xj=x | Y=y) =
instances with label y where feature j has value x

instances with label y

Naïve Bayes
Learning probabilities in unsupervised Naïve Bayes:

P(Xj=x | Z=z) =
instances with category z where feature j has value x

instances with category z

Naïve Bayes
Learning probabilities in unsupervised Naïve Bayes:

P(Xj=x | Z=z) =
Expected # instances with category z where feature j has value x

Expected # instances with category z

• Using Expectation Maximization (EM)

Expectation Maximization (EM)
The EM algorithm iteratively alternates between
two steps:

1. Expectation step (E-step)

Calculate P(Z=z | Xi) = P(Xi | Z=z) P(Z=z)
for every instance Σy’ P(Xi | Z=z’) P(Z=z’)

These parameters come from
the previous iteration of EM

Expectation Maximization (EM)
The EM algorithm iteratively alternates between
two steps:

2. Maximization step (M-step)

Update the probabilities P(X | Z) and P(Z),
replacing the observed counts with the
expected values of the counts
• Equivalent to Σi P(Z=z | Xi)

Expectation Maximization (EM)
The EM algorithm iteratively alternates between
two steps:

2. Maximization step (M-step)

P(Xj=x | Z=z) = Σi P(Z=z | Xi) I(Xij=x)

Σi P(Z=z | Xi)

for each feature j
and each category z

These values come
from the E-step

Unsupervised Naïve Bayes
1. Need to set the number of latent classes
2. Initially define the parameters randomly
• Randomly initialize P(X | Z) and P(Z) for all features

and classes
3. Run the EM algorithm to update P(X | Z) and

P(Z) based on unlabeled data
4. After EM converges, the final estimates of

P(X | Z) and P(Z) can be used for clustering

Unsupervised Naïve Bayes
In (unsupervised) Naïve Bayes, each document
belongs to one category
• This is a typical assumption for classification

(though it doesn’t have to be – remember multi-
label classification)

Admixture Models
In (unsupervised) Naïve Bayes, each document
belongs to one category
• This is a typical assumption for classification

(though it doesn’t have to be – remember multi-
label classification)

A better model might allow documents to contain
multiple latent categories (aka topics)
• Called an admixture of topics

Admixture Models

From	 Blei (2012)

Admixture Models
In an admixture model, each document has
different proportions of different topics
• Unsupervised Naïve Bayes is considered a

mixture model (the dataset contains a mixture of
topics, but each instance has only one topic)

Probability of each topic in a specific document
• P(Z | d)
• Another type of parameter to learn

Admixture Models
In this type of model, the “generative process”
for a document d can be described as:

1. For each token in the document d:
a) Sample a topic z according to P(z | d)
b) Sample a word w according to P(w | z)

Contrast with Naïve Bayes:
1. Sample a topic z according to P(z)
2. For each token in the document d:

a) Sample a word w according to P(w | z)

Admixture Models
In this type of model, the “generative process”
for a document d can be described as:

1. For each token in the document d:
a) Sample a topic z according to P(z | d)
b) Sample a word w according to P(w | z)

• Same as in Naïve Bayes
(each “topic” has a distribution of words)
• Parameters can be learned in a similar way
• Called β (sometimes Φ)by convention

Admixture Models
In this type of model, the “generative process”
for a document d can be described as:

1. For each token in the document d:
a) Sample a topic z according to P(z | d)
b) Sample a word w according to P(w | z)

• Related to but different from Naïve Bayes
• Instead of one P(z) shared by every document,

each document has its own distribution
• More parameters to learn
• Called θ by convention

Admixture Models

From	 Blei (2012)

β1

β2

β3

β4

θd

Learning
How to learn β and θ?

Expectation Maximization (EM) once again!

Learning

E-step

P(topic=j | word=v, θd , βj)

= P(word=v, topic=j | θd , βj)
Σk P(word=v, topic=k | θd , βk)

Learning

M-step

new θdj

= # tokens in d with topic label j
tokens in d

if the	 topic	 labels	 were	
observed!
• just	 counting

Learning

M-step

new θdj

= Σi∈d P(topic i=j | word i, θd , βj)
Σk Σi∈d P(topic i=k | word i, θd , βk)

sum over each token i in document d
• numerator: the expected number of tokens with topic j

in document d
• denominator: the number of tokens in document d

just the number of
tokens in the document

Learning

M-step

new βjw

= # tokens with topic label j and word w
tokens with topic label j

if the	 topic	 labels	 were	
observed!
• just	 counting

Learning

M-step

new βjw
= Σi I(word i=w) P(topic i=j | word i=w, θd , βj)

Σv Σi I(word i=v) P(topic i=j | word i=v, θd , βj)
sum over vocabulary

sum over each token i in the entire corpus
• numerator: the expected number of times word w

belongs to topic j
• denominator: the expected number of all tokens

belonging to topic j

Smoothing

From last week’s Naïve Bayes lecture:

Adding “pseudocounts” to the observed counts
when estimating P(X | Y) is called smoothing

Smoothing makes the estimated probabilities less
extreme
• It is one way to perform regularization in

Naïve Bayes (reduce overfitting)

Smoothing
Smoothing is also commonly done in
unsupervised learning like topic modeling
• Today we’ll see a mathematical justification for

smoothing

Smoothing: Generative Perspective
In general models, we can also treat the
parameters themselves as random variables
• P(θ)?
• P(β)?

Called the prior probability of the parameters
• Same concept as the prior P(Y) in Naïve Bayes

We’ll see that pseudocount smoothing is the result
when the parameters have a prior distribution
called the Dirichlet distribution

Geometry of Probability
A distribution over K elements is a point on a K-1
simplex
• a 2-simplex is called a triangle

A

B C

Geometry of Probability
A distribution over K elements is a point on a K-1
simplex
• a 2-simplex is called a triangle

A

B C

P(A)	 =	 1
P(B)	 =	 0
P(C)	 =	 0

Geometry of Probability
A distribution over K elements is a point on a K-1
simplex
• a 2-simplex is called a triangle

A

B C

P(A)	 =	 1/2
P(B)	 =	 1/2
P(C)	 =	 0

Geometry of Probability
A distribution over K elements is a point on a K-1
simplex
• a 2-simplex is called a triangle

A

B C

P(A)	 =	 1/3
P(B)	 =	 1/3
P(C)	 =	 1/3

Dirichlet Distribution
Continuous distribution (probability density) over
points in the simplex
• “distribution of distributions”

A

B C

Dirichlet Distribution
Continuous distribution (probability density) over
points in the simplex
• “distribution of distributions”

A

B C

Denoted Dirichlet(α)

α is a vector that gives the
mean/variance of the
distribution

In this example, αB is larger
than the others, so points
closer to B are more likely
• Distributions that give B high

probability are more likely
than distributions that don’t

Dirichlet Distribution
Continuous distribution (probability density) over
points in the simplex
• “distribution of distributions”

A

B C

Denoted Dirichlet(α)

α is a vector that gives the
mean/variance of the
distribution

In this example, αA=αB=αC,
so distributions close to
uniform are more likely

Larger values of α give
higher density around mean

(lower variance)

Latent Dirichlet Allocation (LDA)
LDA is the topic model previous slides, but with
Dirichlet priors on the parameters θ and β
• P(θ | α) = Dirichlet(α)
• P(β | η) = Dirichlet(η)

• Most widely used topic model
• Lots of different implementations / learning

algorithms

MAP Learning
How to learn β and θ with Dirichlet priors?

The posterior distribution of parameters for LDA:

• Want to maximize this

MAP Learning
So far we have used EM to find parameters that
maximize the likelihood of the data

EM can also find the maximum a posteriori (MAP)
solution
• the parameters that maximum the posterior probability

• Similar objective as before, but with additional
terms for the probability of θ and β

constant

MAP Learning
• E-step is the same
• M-step is modified

new θd1
= α1 - 1 + Σi∈d P(topic i=1 | word i, θd , β1)

Σk (αk - 1 + Σi∈d P(topic i=k | word i, θd , βk))

pseudocounts

MAP Learning
Where do the pseudocounts come from?

The probability of observing the kth topic n times given
the parameter θk is proportional to:

θk
n

The probability density of the parameter θk given the
Dirichlet parameter αk is proportional to:

θk
αk-1

The product of these probabilities is proportional to:
θk

n+αk-1

Smoothing: Generative Perspective
Larger pseudocounts will bias the MAP estimate more heavily
Larger Dirichlet parameters concentrate the density around the mean

Smoothing: Generative Perspective
Dirichlet prior MAP estimation yields “α – 1”
smoothing

• So what happens if α < 1?

Highest density around edges of simplex
• Prior favors small number of topics per document

Posterior Inference
What if we don’t just want the parameters that
maximize the posterior?

What if we care about the entire posterior distribution?
• or at least the mean of the posterior distribution

Why?
• maybe the maximum doesn’t look like the rest
• other points of the posterior more likely to

generalize to data you haven’t seen before

Posterior Inference
What if we don’t just want the parameters that
maximize the posterior?

This is harder

• Computing the denominator involves summing over all
possible configurations of the latent variables/parameters

Posterior Inference
Various methods existing for approximating the
posterior (also called Bayesian inference)
• Random sampling

• Monte Carlo methods
• Variational inference

• Optimization using EM-like procedure
• MAP estimation is a simple case of this

Dimensionality Reduction
Recall:
Methods like PCA can transform a high-dimensional
feature space (e.g., each word is a feature) into a low-
dimensional space
• Each feature vector is rewritten as a new vector

Dimensionality Reduction
Topic models can also be used as a form of
dimensionality reduction
• Each document’s feature vector is θd, aka P(Z | d)
• With 100 topics, this is a 100-dimensional vector
• Semantically similar words will map to a similar part

of the feature space, since then tend to be grouped
into the same topics

This is similar to the ideas behind “embedding”
methods like word2vec

Priors as Regularization
We saw that Dirichlet priors are equivalent to
pseudocount smoothing, which is used as
regularization in Naïve Bayes

Other types of priors are equivalent to other types
of regularization you’ve seen!

Priors as Regularization
Recall: For real-valued weights (e.g., SVM or logistic
regression), the most common type of regularization is
to minimize the L2 norm of the weights

Minimizing the L2 norm ends up being mathematically
equivalent to having a prior distribution on the weights
where the prior is the Gaussian (normal) distribution!
• The mean of the Gaussian is 0
• The variance of the Gaussian

acts as the regularization
strength (‘C’ or ‘alpha’)

Priors as Regularization
L1 regularization, which favors weights that are
exactly 0, is equivalent to the Laplace (double
exponential) distribution as the prior
• Like with Gaussian, the mean is 0 and variance

adjusts the regularization strength

Priors as Inductive Bias
Recall that an inductive bias intentionally biases
what a classifier learns toward certain
characteristics that you think will be useful
• Regularization toward small weights is a common

type of inductive bias in machine learning
• There are other useful inductive biases that can be

encoded as priors
• Any prior on the parameters is an inductive bias

Priors as Inductive Bias
In topic models:
Dirichlet priors bias the learned distributions
toward the uniform distribution
• Yields less extreme probabilities, reducing overfitting

But Dirichlet priors don’t
have to bias toward uniform!
Other biases can be useful.

Priors as Inductive Bias
In topic models:

From	 Wallach	 et	 al	 (2009)

Priors as Inductive Bias
For real-valued parameters, a Gaussian prior with
mean of 0 is equivalent to L2 regularization

Can also use a Gaussian prior with a mean set to
some value other than 0!
• If you believe certain features should have a positive

or negative weight, you could set the mean of the prior
to a positive or negative value to bias it in that direction

Priors as Inductive Bias
Example: domain adaptation

What to do when your training data includes
different domains (distributions of data)?
• e.g., sentiment classification on reviews of movies

and reviews of mattresses
• Challenge in machine learning: might learn patterns

that work in one domain but not another

Priors as Inductive Bias
One idea: learn each domain separately
• But this is limited because you have less training data

for each domain
• How to learn domain-specific parameters while still

using all of the training data?

One approach (Finkel and Manning 2009):
• Learn “overall” feature weights for all domains
• Learn domain-specific feature weights
• The prior for the domain-specific weights is a Gaussian

distribution where the mean is the “overall” weight

