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Unsupervised Naïve Bayes
Last week you saw how Naïve Bayes can be 
used in semi-supervised or unsupervised settings
• Learn parameters with the EM algorithm

Unsupervised Naïve Bayes is considered a type 
of topic model when used for text data
• Learns to group documents into different categories, 

referred to as “topics”
• Instances are documents; features are words

Today’s focus is text, but ideas can be applied to 
other types of data



Topic Models
Topic models are used to find common patterns in 
text datasets
• Method of exploratory analysis
• For understanding data rather than prediction 

(though sometimes also useful for prediction –
we’ll see at the end of this lecture)

Unsupervised learning means that it can provide 
analysis without requiring a lot of input from a user



Topic Models

From	  Talley	  et	  al	  (2011)



Topic Models

From	  Nguyen	  et	  al	  (2013)



Topic Models

From	  Ramage et	  al	  (2010)



Unsupervised Naïve Bayes
Naïve Bayes is not often used as a topic model
• We’ll learn more common, more complex models 

today
• But let’s start by reviewing it, and then build off the 

same ideas



Generative Models
When we introduced generative models, we said 
that they can also be used to generate data



Generative Models
How would you use Naïve Bayes to randomly 
generate a document?

First, randomly pick a category, Y Z
• Notation convention to use Z for latent categories in 

unsupervised modeling instead of Y (since Y often implies 
it is a known value you are trying to predict)
• The category should be randomly sampled according to 

the prior distribution, P(Z)



Generative Models
How would you use Naïve Bayes to randomly 
generate a document?

First, randomly pick a category, Z
Then, randomly pick words
• Sampled according to the distribution, P(W | Z)

These steps are known as the generative process 
for this model



Generative Models
How would you use Naïve Bayes to randomly 
generate a document?

This process won’t result in a coherent document
• But, the words in the document are likely to be 

semantically/topically related to each other, since 
P(W | Z) will give high probability to words that are 
common in the particular category



Generative Models
Another perspective on learning:
If you assume that the “generative process” for a 
model is how the data was generated, then work 
backwards and ask:
• What are the probabilities that most likely would 

have generated the data that we observe?

The generative process is almost always overly 
simplistic
• But it can still be a way to learn something useful



Generative Models
With unsupervised learning, the same approach 
applies
• What are the probabilities that most likely would 

have generated the data that we observe?
• If we observe similar patterns across multiple 

documents, those documents are likely to have 
been generated from the same latent category



Naïve Bayes
Let’s first review (unsupervised) Naïve Bayes 
and Expectation Maximization (EM)



Naïve Bayes
Learning probabilities in Naïve Bayes:

P(Xj=x | Y=y) =
# instances with label y where feature j has value x

# instances with label y



Naïve Bayes
Learning probabilities in unsupervised Naïve Bayes:

P(Xj=x | Z=z) =
# instances with category z where feature j has value x

# instances with category z



Naïve Bayes
Learning probabilities in unsupervised Naïve Bayes:

P(Xj=x | Z=z) =
Expected # instances with category z where feature j has value x

Expected # instances with category z

• Using Expectation Maximization (EM)



Expectation Maximization (EM)
The EM algorithm iteratively alternates between 
two steps: 

1. Expectation step (E-step)

Calculate P(Z=z | Xi) =        P(Xi | Z=z) P(Z=z)
for every instance Σy’ P(Xi | Z=z’) P(Z=z’)

These parameters come from 
the previous iteration of EM



Expectation Maximization (EM)
The EM algorithm iteratively alternates between 
two steps: 

2. Maximization step (M-step)

Update the probabilities P(X | Z) and P(Z), 
replacing the observed counts with the 
expected values of the counts
• Equivalent to Σi P(Z=z | Xi) 



Expectation Maximization (EM)
The EM algorithm iteratively alternates between 
two steps: 

2. Maximization step (M-step)

P(Xj=x | Z=z) = Σi P(Z=z | Xi) I(Xij=x)

Σi P(Z=z | Xi)

for each feature j 
and each category z

These values come 
from the E-step



Unsupervised Naïve Bayes
1. Need to set the number of latent classes
2. Initially define the parameters randomly
• Randomly initialize P(X | Z) and P(Z) for all features 

and classes
3. Run the EM algorithm to update P(X | Z) and 

P(Z) based on unlabeled data
4. After EM converges, the final estimates of

P(X | Z) and P(Z) can be used for clustering



Unsupervised Naïve Bayes
In (unsupervised) Naïve Bayes, each document 
belongs to one category
• This is a typical assumption for classification 

(though it doesn’t have to be – remember multi-
label classification)



Admixture Models
In (unsupervised) Naïve Bayes, each document 
belongs to one category
• This is a typical assumption for classification 

(though it doesn’t have to be – remember multi-
label classification)

A better model might allow documents to contain 
multiple latent categories (aka topics)
• Called an admixture of topics



Admixture Models

From	  Blei (2012)



Admixture Models
In an admixture model, each document has 
different proportions of different topics
• Unsupervised Naïve Bayes is considered a 

mixture model (the dataset contains a mixture of 
topics, but each instance has only one topic)

Probability of each topic in a specific document
• P(Z | d)
• Another type of parameter to learn



Admixture Models
In this type of model, the “generative process” 
for a document d can be described as:

1. For each token in the document d:
a) Sample a topic z according to P(z | d)
b) Sample a word w according to P(w | z)

Contrast with Naïve Bayes:
1. Sample a topic z according to P(z)
2. For each token in the document d:

a) Sample a word w according to P(w | z)



Admixture Models
In this type of model, the “generative process” 
for a document d can be described as:

1. For each token in the document d:
a) Sample a topic z according to P(z | d)
b) Sample a word w according to P(w | z)

• Same as in Naïve Bayes
(each “topic” has a distribution of words)
• Parameters can be learned in a similar way
• Called β (sometimes Φ)by convention



Admixture Models
In this type of model, the “generative process” 
for a document d can be described as:

1. For each token in the document d:
a) Sample a topic z according to P(z | d)
b) Sample a word w according to P(w | z)

• Related to but different from Naïve Bayes
• Instead of one P(z) shared by every document, 

each document has its own distribution
• More parameters to learn
• Called θ by convention 



Admixture Models

From	  Blei (2012)

β1

β2

β3

β4

θd



Learning
How to learn β and θ?

Expectation Maximization (EM) once again!



Learning

E-step

P(topic=j | word=v, θd , βj)

= P(word=v, topic=j | θd , βj)
Σk P(word=v, topic=k | θd , βk)



Learning

M-step

new θdj

= # tokens in d with topic label j
# tokens in d

if the	  topic	  labels	  were	  
observed!
• just	  counting



Learning

M-step

new θdj

= Σi∈d P(topic i=j | word i, θd , βj)
Σk Σi∈d P(topic i=k | word i, θd , βk)

sum over each token i in document d
• numerator: the expected number of tokens with topic j

in document d
• denominator: the number of tokens in document d

just the number of 
tokens in the document



Learning

M-step

new βjw

= # tokens with topic label j and word w
# tokens with topic label j

if the	  topic	  labels	  were	  
observed!
• just	  counting



Learning

M-step

new βjw
= Σi I(word i=w) P(topic i=j | word i=w, θd , βj)

Σv Σi I(word i=v) P(topic i=j | word i=v, θd , βj)
sum over vocabulary

sum over each token i in the entire corpus
• numerator: the expected number of times word w

belongs to topic j
• denominator: the expected number of all tokens 

belonging to topic j



Smoothing

From last week’s Naïve Bayes lecture:

Adding “pseudocounts” to the observed counts 
when estimating P(X | Y) is called smoothing

Smoothing makes the estimated probabilities less 
extreme
• It is one way to perform regularization in 

Naïve Bayes (reduce overfitting)



Smoothing
Smoothing is also commonly done in 
unsupervised learning like topic modeling
• Today we’ll see a mathematical justification for 

smoothing



Smoothing: Generative Perspective
In general models, we can also treat the 
parameters themselves as random variables
• P(θ)?
• P(β)?

Called the prior probability of the parameters
• Same concept as the prior P(Y) in Naïve Bayes

We’ll see that pseudocount smoothing is the result 
when the parameters have a prior distribution 
called the Dirichlet distribution



Geometry of Probability
A distribution over K elements is a point on a K-1 
simplex
• a 2-simplex is called a triangle

A

B C



Geometry of Probability
A distribution over K elements is a point on a K-1 
simplex
• a 2-simplex is called a triangle

A

B C

P(A)	  =	  1
P(B)	  =	  0
P(C)	  =	  0



Geometry of Probability
A distribution over K elements is a point on a K-1 
simplex
• a 2-simplex is called a triangle

A

B C

P(A)	  =	  1/2
P(B)	  =	  1/2
P(C)	  =	  0



Geometry of Probability
A distribution over K elements is a point on a K-1 
simplex
• a 2-simplex is called a triangle

A

B C

P(A)	  =	  1/3
P(B)	  =	  1/3
P(C)	  =	  1/3



Dirichlet Distribution
Continuous distribution (probability density) over 
points in the simplex
• “distribution of distributions”

A

B C



Dirichlet Distribution
Continuous distribution (probability density) over 
points in the simplex
• “distribution of distributions”

A

B C

Denoted Dirichlet(α)

α is a vector that gives the 
mean/variance of the  
distribution

In this example, αB is larger 
than the others, so points 
closer to B are more likely
• Distributions that give B high 

probability are more likely 
than distributions that don’t



Dirichlet Distribution
Continuous distribution (probability density) over 
points in the simplex
• “distribution of distributions”

A

B C

Denoted Dirichlet(α)

α is a vector that gives the 
mean/variance of the  
distribution

In this example, αA=αB=αC, 
so distributions close to 
uniform are more likely

Larger values of α give 
higher density around mean 

(lower variance)



Latent Dirichlet Allocation (LDA)
LDA is the topic model previous slides, but with 
Dirichlet priors on the parameters θ and β
• P(θ | α) = Dirichlet(α)
• P(β | η) = Dirichlet(η)

• Most widely used topic model
• Lots of different implementations / learning 

algorithms



MAP Learning
How to learn β and θ with Dirichlet priors?

The posterior distribution of parameters for LDA:

• Want to maximize this



MAP Learning
So far we have used EM to find parameters that 
maximize the likelihood of the data

EM can also find the maximum a posteriori (MAP) 
solution
• the parameters that maximum the posterior probability

• Similar objective as before, but with additional 
terms for the probability of θ and β

constant



MAP Learning
• E-step is the same
• M-step is modified

new θd1
= α1 - 1 + Σi∈d P(topic i=1 | word i, θd , β1)

Σk (αk - 1 + Σi∈d P(topic i=k | word i, θd , βk))

pseudocounts



MAP Learning
Where do the pseudocounts come from?

The probability of observing the kth topic n times given 
the parameter θk is proportional to:

θk
n

The probability density of the parameter θk given the 
Dirichlet parameter αk is proportional to:

θk
αk-1

The product of these probabilities is proportional to:
θk

n+αk-1



Smoothing: Generative Perspective
Larger pseudocounts will bias the MAP estimate more heavily
Larger Dirichlet parameters concentrate the density around the mean



Smoothing: Generative Perspective
Dirichlet prior MAP estimation yields “α – 1” 
smoothing

• So what happens if α < 1? 

Highest density around edges of simplex
• Prior favors small number of topics per document



Posterior Inference
What if we don’t just want the parameters that 
maximize the posterior?

What if we care about the entire posterior distribution?
• or at least the mean of the posterior distribution

Why?
• maybe the maximum doesn’t look like the rest
• other points of the posterior more likely to 

generalize to data you haven’t seen before



Posterior Inference
What if we don’t just want the parameters that 
maximize the posterior?

This is harder

• Computing the denominator involves summing over all 
possible configurations of the latent variables/parameters



Posterior Inference
Various methods existing for approximating the 
posterior (also called Bayesian inference)
• Random sampling

• Monte Carlo methods
• Variational inference

• Optimization using EM-like procedure
• MAP estimation is a simple case of this



Dimensionality Reduction
Recall:
Methods like PCA can transform a high-dimensional 
feature space (e.g., each word is a feature) into a low-
dimensional space
• Each feature vector is rewritten as a new vector



Dimensionality Reduction
Topic models can also be used as a form of 
dimensionality reduction
• Each document’s feature vector is θd, aka P(Z | d)
• With 100 topics, this is a 100-dimensional vector
• Semantically similar words will map to a similar part 

of the feature space, since then tend to be grouped 
into the same topics

This is similar to the ideas behind “embedding” 
methods like word2vec



Priors as Regularization
We saw that Dirichlet priors are equivalent to 
pseudocount smoothing, which is used as 
regularization in Naïve Bayes

Other types of priors are equivalent to other types 
of regularization you’ve seen!



Priors as Regularization
Recall: For real-valued weights (e.g., SVM or logistic 
regression), the most common type of regularization is 
to minimize the L2 norm of the weights

Minimizing the L2 norm ends up being mathematically 
equivalent to having a prior distribution on the weights 
where the prior is the Gaussian (normal) distribution!
• The mean of the Gaussian is 0
• The variance of the Gaussian 

acts as the regularization 
strength (‘C’ or ‘alpha’)



Priors as Regularization
L1 regularization, which favors weights that are 
exactly 0, is equivalent to the Laplace (double 
exponential) distribution as the prior
• Like with Gaussian, the mean is 0 and variance 

adjusts the regularization strength



Priors as Inductive Bias
Recall that an inductive bias intentionally biases 
what a classifier learns toward certain 
characteristics that you think will be useful
• Regularization toward small weights is a common 

type of inductive bias in machine learning
• There are other useful inductive biases that can be 

encoded as priors
• Any prior on the parameters is an inductive bias



Priors as Inductive Bias
In topic models:
Dirichlet priors bias the learned distributions 
toward the uniform distribution
• Yields less extreme probabilities, reducing overfitting

But Dirichlet priors don’t 
have to bias toward uniform!
Other biases can be useful.



Priors as Inductive Bias
In topic models:

From	  Wallach	  et	  al	  (2009)



Priors as Inductive Bias
For real-valued parameters, a Gaussian prior with 
mean of 0 is equivalent to L2 regularization

Can also use a Gaussian prior with a mean set to 
some value other than 0! 
• If you believe certain features should have a positive 

or negative weight, you could set the mean of the prior 
to a positive or negative value to bias it in that direction



Priors as Inductive Bias
Example: domain adaptation

What to do when your training data includes 
different domains (distributions of data)?
• e.g., sentiment classification on reviews of movies 

and reviews of mattresses
• Challenge in machine learning: might learn patterns 

that work in one domain but not another



Priors as Inductive Bias
One idea: learn each domain separately
• But this is limited because you have less training data 

for each domain
• How to learn domain-specific parameters while still 

using all of the training data?

One approach (Finkel and Manning 2009):
• Learn “overall” feature weights for all domains
• Learn domain-specific feature weights
• The prior for the domain-specific weights is a Gaussian 

distribution where the mean is the “overall” weight


