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Generative vs Discriminative
The classification algorithms we have seen so far 
are called discriminative algorithms
• Learn to discriminate (i.e., distinguish/separate) 

between classes

Generative algorithms learn the characteristics of 
each class
• Then make a prediction of an instance based on 

which class it better matches
• Generative models can also be used to 

randomly generate instances of a class



Generative vs Discriminative
A high-level way to think about the difference:
Generative models use absolute descriptions of 
features and discriminative models use relative
descriptions 

Example: classifying cats vs dogs
Generative perspective:
• Cats weigh 10 pounds on average
• Dogs weigh 50 pounds on average
Discriminative perspective:
• Dogs weigh 40 pounds more than cats on average



Generative vs Discriminative
The difference between the two is often defined 
probabilistically:

Generative models: 
• Algorithms learn P(X | Y)
• Then converted to P(Y | X) to make prediction
Discriminative models:
• Algorithms learn P(Y | X)
• Probability can be directly used for prediction

Recall: P(A | B) is the probability of A given B



Generative vs Discriminative
While discriminative models are not often 
probabilistic (but can be, like logistic regression), 
generative models usually are.



Example
Classify cat vs dog based on weight
• Cats have a mean weight of 10 pounds (stddev 2)
• Dogs have a mean weight of 50 pounds (stddev 20)

Could model the probability of the weight with a 
normal distribution
• Normal(10, 2) distribution for cats, 

Normal(50, 20) for dogs
• This is a distribution of probability density, but will 

refer to this as probability in this lecture



Example
Classify an animal that weighs 14 pounds

P(weight=14 | animal=cat) 
= .027

P(weight=14 | animal=dog) 
= .004



Example
Classify an animal that weighs 14 pounds

P(weight=14 | animal=cat) 
= .027

P(weight=14 | animal=dog) 
= .004

Choosing the Y that 
gives the highest P(X | Y) 
is reasonable… but not 
quite the right thing to do

• What if dogs were 99 
times more common than 
cats in your dataset?
That would affect the 
probability of being a cat 
versus a dog.



Bayes’ Theorem
We have P(X | Y), but we really want P(Y | X)

Bayes’ theorem (or Bayes’ rule):

P(B | A) = P(A | B) P(B)
P(A)



Example
Classify an animal that weighs 14 pounds
Also: dogs are 99 times more common than cats 
in the data

P(weight=14 | animal=cat) = .027
P(animal=cat | weight=14) = ?



Example
Classify an animal that weighs 14 pounds
Also: dogs are 99 times more common than cats 
in the data

P(weight=14 | animal=cat) = .027
P(animal=cat | weight=14) 
= P(weight=14 | animal=cat) P(animal=cat)
= 0.027 * 0.01 = 0.00027



Example
Classify an animal that weighs 14 pounds
Also: dogs are 99 times more common than cats 
in the data

P(weight=14 | animal=dog) = .004
P(animal=dog | weight=14) 
= P(weight=14 | animal=dog) P(animal=dog)
= 0.004 * 0.99 = 0.00396



Example
Classify an animal that weighs 14 pounds
Also: dogs are 99 times more common than cats 
in the data

P(animal=dog | weight=14) > 
P(animal=cat | weight=14) 

You should classify the animal as a dog.



Naïve Bayes
Naïve Bayes is a classification algorithm that 
classifies an instance based on P(Y | X), where 
P(Y | X) is calculated using Bayes’ rule:

P(Y | X) = P(X | Y) P(Y)
P(X)

Why naïve? We’ll come back to that.



Naïve Bayes
Naïve Bayes is a classification algorithm that 
classifies an instance based on P(Y | X), where 
P(Y | X) is calculated using Bayes’ rule:

P(Y | X) = P(X | Y) P(Y)
P(X)

• Called the prior probability of Y
• Usually just calculated as the 

percentage of training instances 
labeled as Y



Naïve Bayes
Naïve Bayes is a classification algorithm that 
classifies an instance based on P(Y | X), where 
P(Y | X) is calculated using Bayes’ rule:

P(Y | X) = P(X | Y) P(Y)
P(X)

• Called the posterior probability of Y
• The conditional probability of Y 

given an instance X



Naïve Bayes
Naïve Bayes is a classification algorithm that 
classifies an instance based on P(Y | X), where 
P(Y | X) is calculated using Bayes’ rule:

P(Y | X) = P(X | Y) P(Y)
P(X)

• This conditional probability is what 
needs to be learned



Naïve Bayes
Naïve Bayes is a classification algorithm that 
classifies an instance based on P(Y | X), where 
P(Y | X) is calculated using Bayes’ rule:

P(Y | X) = P(X | Y) P(Y)
P(X)

• What about P(X)? 
• Probability of observing the data
• Doesn’t actually matter!
• P(X) is the same regardless of Y
• Doesn’t change which Y has highest probability



Naïve Bayes

Learning:
• Estimate P(X | Y) from the data
• Estimate P(Y) from the data

Prediction:
• Choose Y that maximizes:

P(X | Y) P(Y)



Naïve Bayes

Learning:
• Estimate P(X | Y) from the data
• ???

• Estimate P(Y) from the data
• Usually just calculated as the percentage of training 

instances labeled as Y



Naïve Bayes

Learning:
• Estimate P(X | Y) from the data
• Requires some decisions (and some math)

• Estimate P(Y) from the data
• Usually just calculated as the percentage of training 

instances labeled as Y



Defining P(X | Y)
With continuous features, a normal distribution is 
a common way to define P(X | Y)
• But keep in mind that this is only an approximation: 

the true probability might be something different
• Other probability distributions exist that you can use 

instead (not discussed here)

With discrete features, the observed distribution 
(i.e., the proportion of instances with each value) 
is usually used as-is
• We’ll return to this later



Defining P(X | Y)
Another complication…
Instances are usually vectors of many features

How do you define the probability of an entire 
feature vector?



Joint Probability
The probability of multiple variables is called the 
joint probability

Example: if you roll two dice, what’s the 
probability that they both land 5?



Joint Probability
36 possible outcomes:

1,1   2,1   3,1   4,1   5,1   6,1
1,2   2,2   3,2   4,2   5,2   6,2
1,3   2,3   3,3   4,3   5,3   6,3
1,4   2,4   3,4   4,4   5,4   6,4
1,5   2,5   3,5   4,5   5,5   6,5
1,6   2,6   3,6   4,6   5,6   6,6



Joint Probability
36 possible outcomes:

1,1   2,1   3,1   4,1   5,1   6,1
1,2   2,2   3,2   4,2   5,2   6,2
1,3   2,3   3,3   4,3   5,3   6,3
1,4   2,4   3,4   4,4   5,4   6,4
1,5   2,5   3,5   4,5   5,5 6,5
1,6   2,6   3,6   4,6   5,6   6,6

Probability of two 5s:
1/36



Joint Probability
36 possible outcomes:

1,1   2,1   3,1   4,1   5,1   6,1
1,2   2,2   3,2   4,2   5,2   6,2
1,3   2,3   3,3   4,3   5,3   6,3
1,4   2,4   3,4   4,4   5,4   6,4
1,5   2,5   3,5   4,5   5,5   6,5
1,6   2,6   3,6   4,6   5,6   6,6



Joint Probability
36 possible outcomes:

1,1   2,1   3,1   4,1   5,1 6,1
1,2   2,2   3,2   4,2   5,2 6,2
1,3   2,3   3,3   4,3   5,3 6,3
1,4   2,4   3,4   4,4   5,4 6,4
1,5   2,5   3,5   4,5   5,5   6,5
1,6   2,6   3,6   4,6   5,6 6,6

Probability the first is 
a 5 and the second is 
anything but 5:

5/36



Joint Probability
A quicker way to calculate this:
The probability of two variables is the product of 
the probability of each individual variable
• Only true if the two variables are independent ! 

(defined on next slide)

Probability of one die landing 5: 1/6

Joint probability of two dice landing 5 and 5: 
1/6 * 1/6 = 1/36



Joint Probability
A quicker way to calculate this:
The probability of two variables is the product of 
the probability of each individual variable
• Only true if the two variables are independent ! 

(defined on next slide)

Probability of one die landing anything but 5: 5/6

Joint probability of two dice landing 5 and not 5: 
1/6 * 5/6 = 5/36



Independence
Multiple variables are independent if knowing the 
outcome of one does not change the probability 
of another
• If I tell you that the first die landed 5, it shouldn’t 

change your belief about the outcome of the 
second (every side will still have 1/6 probability)
• Dice rolls are independent



Conditional Independence
Naïve Bayes treats the feature probabilities as 
independent (conditioned on Y)

P(<X1, X2, …, XM> | Y)
= P(X1 | Y) * P(X2 | Y) … * P(XM | Y)

Features are usually not actually independent!
• Treating them as if they are is considered naïve
• But it’s often a good enough approximation
• This makes the calculation much easier



Conditional Independence
Important distinction:
the features have conditional independence: 
the independence assumption only applies to the 
conditional probabilities P(X | Y)

Conditional independence:
• P(X1, X2 | Y) = P(X1 | Y) * P(X2 | Y)
• Not necessarily true that 

P(X1, X2) = P(X1) * P(X2)



Conditional Independence
Example: Suppose you are classifying the 
category of a news article using word features

If you observe the word “baseball”, this would 
increase the likelihood that the word “homerun” 
will appear in the same article
• These two features are clearly not independent

But if you already know the article is about 
baseball (Y=baseball), then observing the word 
“baseball” doesn’t change the probability of 
observing other baseball-related words



Defining P(X | Y)
Naïve Bayes is most often used with discrete 
features

With discrete features, the probability of a 
particular feature value is usually calculated as:

# of times the feature has that value
total # of occurrences of the feature



Document Classification
Naïve Bayes is often used for document 
classification
• Given the document class, what is the 

probability of observing the words in the 
document?



Document Classification
Example:

3 documents:
“the water is cold” 
“the pig went home”
“the home is cold”

P(“the”) = 3/12
P(“is”) = 2/12
P(“home”) = 2/12
P(“cold”) = 2/12
P(“water”) = 1/12
P(“went”) = 1/12
P(“pig”) = 1/12

P(“the water is cold”)
= P(“the”) P(“water”) P(“is”) P(“cold”)



Document Classification
Example:

3 documents:
“the water is cold” 
“the pig went home”
“the home is cold”

P(“the”) = 3/12
P(“is”) = 2/12
P(“home”) = 2/12
P(“cold”) = 2/12
P(“water”) = 1/12
P(“went”) = 1/12
P(“pig”) = 1/12

P(“the water is very cold”)
= P(“the”) P(“water”) P(“is”) P(“very”) P(“cold”)



Document Classification
Example:

3 documents:
“the water is cold” 
“the pig went home”
“the home is cold”

P(“the”) = 3/12
P(“is”) = 2/12
P(“home”) = 2/12
P(“cold”) = 2/12
P(“water”) = 1/12
P(“went”) = 1/12
P(“pig”) = 1/12
P(“very”) = 0/12

P(“the water is very cold”)
= P(“the”) P(“water”) P(“is”) P(“very”) P(“cold”)
= 0



Document Classification
Example:

3 documents:
“the water is cold” 
“the pig went home”
“the home is cold”

P(“the”) = 3/12
P(“is”) = 2/12
P(“home”) = 2/12
P(“cold”) = 2/12
P(“water”) = 1/12
P(“went”) = 1/12
P(“pig”) = 1/12
P(“very”) = 0/12

One trick: pretend every value occurred one 
more time than it did



Document Classification
Example:

3 documents:
“the water is cold” 
“the pig went home”
“the home is cold”

P(“the”) = 4/12
P(“is”) = 3/12
P(“home”) = 3/12
P(“cold”) = 3/12
P(“water”) = 2/12
P(“went”) = 2/12
P(“pig”) = 2/12
P(“very”) = 1/12

One trick: pretend every value occurred one 
more time than it did



Document Classification
Example:

3 documents:
“the water is cold” 
“the pig went home”
“the home is cold”

P(“the”) = 4/20
P(“is”) = 3/20
P(“home”) = 3/20
P(“cold”) = 3/20
P(“water”) = 2/20
P(“went”) = 2/20
P(“pig”) = 2/20
P(“very”) = 1/20

• Need to adjust both numerator and 
denominator



Smoothing
Adding “pseudocounts” to the observed counts 
when estimating P(X | Y) is called smoothing

Smoothing makes the estimated probabilities less 
extreme
• It is one way to perform regularization in 

Naïve Bayes (reduce overfitting)



Generative vs Discriminative
The conventional wisdom is that discriminative 
models generally perform better because they 
directly model what you care about, P(Y | X)

When to use generative models?
• Generative models have been shown to need 

less training data to reach peak performance
• Generative models are more conducive to 

unsupervised and semi-supervised learning
• More on that point next week


