
Model Selection, 
Evaluation, Diagnosis

INFO-4604, Applied Machine Learning
University of Colorado Boulder

October 31 – November 2, 2017
Prof. Michael Paul



Today
How do you estimate how well your classifier will 
perform?
• Pipeline for model evaluation
• Introduction to important metrics

How do you tune a model and select the best 
hyperparameters?
• Approaches to model selection



Evaluation
In homework, you’ve seen that:
• training data is usually separate from test data
• training accuracy is often much higher than test 

accuracy
• Training accuracy is what your classifier is optimizing 

for (plus regularization), but not a good indicator of 
how it will perform



Evaluation
Distinction between:
• in-sample data
• The data that is available when building your model
• “Training” data in machine learning terminology

• out-of-sample data 
• Data that was not seen during training
• Also called held-out data or a holdout set
• Useful to see what your classifier will do on data it 

hasn’t seen before
• Usually assumed to be from the same distribution as 

in-sample data



Evaluation
Ideally, you should be “blind” to the test data until 
you are ready to evaluate your final model

Often you need to evaluate a model repeatedly 
(e.g., you’re trying to pick the best regularization 
strength, and you want to see how different values 
affect the performance)
• If you keep using the same test data, you risk overfitting to 

the test set
• Should use a different set, still held-out from training data, 

but different from test set
• We’ll revisit this later in the lecture



Evaluation



Held-Out Data
Typically you set aside a random sample of your 
labeled data to use for testing
• A lot of ML datasets you download will already be split into 

training vs test, so that people use the same splits in 
different experiments

How much data to set aside for testing? Tradeoff:
• Smaller test set: less reliable performance estimate
• Smaller training set: less data for training, probably 

worse classifier (might underestimate performance)



Held-Out Data
A common approach to getting held-out estimates is 
k-fold cross validation

General idea:
• split your data into k partitions (“folds”)
• use all but one for training, use the last fold for testing
• Repeat k times, so each fold gets used for testing once

This will give you k different held-out performance 
estimates
• Can then average them to get final result 



Held-Out Data

Illustration of 10-fold cross-validation



Held-Out Data
How to choose k?
• Generally, larger is better, but limited by efficiency
• Most common values: 5 or 10
• Smaller k means less training data used, so your 

estimate may be an underestimate

When k is the number of instances, this is called
leave-one-out cross-validation
• Useful with small datasets, when you want to use as 

much training data as possible



Held-Out Data
Benefits of obtaining multiple held-out estimates:
• More robust final estimate; less sensitive to the 

particular test split that you choose
• Multiple estimates also gives you the variance of the 

estimates; can be used to construct confidence 
intervals (but not doing this in this class)



Other Considerations
When splitting into train vs test partitions, keep in 
mind the unit of analysis

Some examples:
• If you are making predictions about people (e.g., 

guessing someone’s age based on their search 
queries), probably shouldn’t have data from the 
same person in both train and test
• Split on people rather than individual instances (queries)

• If time is a factor in your data, probably want test 
sets to be from later time periods than training sets
• Don’t use the future to predict the past



Other Considerations
If there are errors in your annotations, then there 
will be errors in your estimates of performance
• Example: your classifier predicts “positive” sentiment 

but it was labeled “neutral”
• If the label actually should have been (or at least 

could have been) positive, then your classifier will be 
falsely penalized

This is another reason why it’s important to 
understand the quality of the annotations in order 
to correctly understand the quality of a model



Other Considerations
If your test performance seems “suspiciously” 
good, trust your suspicions 
• Make sure you aren’t accidentally including any 

training information in the test set
• More on debugging next time

General takeaway:
• Make sure the test conditions are as similar as 

possible to the actual prediction environment
• Don’t trick yourself into thinking your model works 

better than it does



Evaluation Metrics
How do we measure performance?
What metrics should be used?



Evaluation Metrics
So far, we have mostly talked about accuracy in 
this class
• The number of correctly classified instances 

divided by the total number of instances

Error is the complement of accuracy
• Accuracy = 1 – Error 
• Error = 1 – Accuracy 



Evaluation Metrics
Accuracy/error give an overall summary of model 
performance, though sometimes hard to interpret

Example: fraud detection in bank transactions
• 99.9% of instances are legitimate
• A classifier that never predicts fraud would have an 

accuracy of 99.9%
• Need a better way to understand performance



Evaluation Metrics
Some metrics measure performance with respect to 
a particular class

With respect to a class c, we define a prediction as:
• True positive: the label is c and the classifier predicted c
• False positive: the label is not c but the classifier predicted c
• True negative: the label is not c and the classifier did not predict c
• False negative: the label is c but the classifier did not predict c



Evaluation Metrics
Two different types of errors:
• False positive (“type I” error)
• False negative (“type II” error)

Usually there is a tradeoff between these two
• Can optimize for one at the expense of the other
• Which one to favor? Depends on task



Evaluation Metrics
Precision is the percentage of instances predicted 
to be positive that were actually positive

Fraud example:
• Low precision means you are classifying legitimate 

transactions as fraudulent



Evaluation Metrics
Recall is the percentage of positive instances that 
were predicted to be positive

Fraud example:
• Low recall means there are fraudulent transactions 

that you aren’t detecting



Evaluation Metrics
Similar to optimizing for false positives vs false 
negatives, there is usually a tradeoff between 
prediction and recall
• Can increase one at the expense of the other
• One might be more important than the other, or they 

might be equally important; depends on task

Fraud example:
• If a human is reviewing the transactions flagged as 

fraudulent, probably optimize for recall
• If the classifications are taken as-is (no human review), 

probably optimize for precision



Evaluation Metrics
Can modify prediction rule to adjust tradeoff
• Increased prediction threshold (i.e., score or 

probability of an instance belonging to a class) 
→ increased precision
• Fewer instances will be predicted positive
• But the ones that are classified positive are more likely 

to be classified correctly (more confidence classifier)
• Decreased threshold → increased recall

• More instances will get classified as positive
(the bar has been lowered)

• But this will make your classifications less accurate, 
lower precision



Evaluation Metrics
The F1 score is an average of precision and recall
• Used as a summary of performance, still with respect 

to a particular class c
• Defined using harmonic mean, affected more by 

lower number
• Both numbers have to be high for F1 to be high
• F1 is therefore useful when both are important



Evaluation Metrics
Precision/recall/F1 are specific to one class
• How to summarize for all classes?

Two different ways of averaging:
• A macro average just averages the individually 

calculated scores of each class
• Weights each class equally

• A micro average calculates the metric by first pooling 
all instances of each class
• Weights each instance equally



Evaluation Metrics
Which metrics to use?
• Accuracy easier to understand/communicate than 

precision/recall/F1, but harder to interpret correctly
• Precision/recall/F1 generally more informative

• If you have a small number of classes, just show P/R/F 
for all classes

• If you have a large number of classes, then probably 
should do macro/micro averaging

• F1 better if precision/recall both important, but 
sometimes you might highlight one over the other



Evaluation Metrics
It is often a good idea to contextualize your results 
by comparing to a baseline level of performance
• A “dummy” baseline, like always outputting the 

majority class, can be useful to understand if your 
data is imbalanced (like in fraud example)
• A simple, “default” classifier for your task, like using 

standard 1-gram features for text, can help you 
understand if your modifications resulted in an 
improvement



Model Selection
Evaluation can help you choose (or select) 
between competing models
• Which classification algorithm to use?
• Best preprocessing steps?
• Best feature set?
• Best hyperparameters?

Usually these are all decided empirically based on 
testing different possibilities on your data



Model Selection
Selecting your model to get optimal test 
performance is risky
• What works best for the particular test set might not 

actually be the best in general
• Overfitting to the test data

Validation (or development) data refers to data 
that is held-out for measuring performance, but is 
separate from the final test set



Model Selection



Model Selection
How to select validation data? Cross-validation 
often used, in one of two ways:
• Use cross-validation for model selection, then 

evaluate on a single held-out test set after tuning
• Use nested cross-validation, where a fold is used 

for testing and a different fold is used for validation 
(and all other folds used for training, as usual)



Model Selection
10-fold cross-validation

Validation fold
Use the best settings 
from cross-validation to 
train a final classifier on 
all of the training data, 
then run on test set once



Model Selection



Model Selection
Nested cross-validation may have different 
optimal settings in each iteration
• Useful for estimating what the test performance 

would be after doing model selection on a 
validation set
• Still need to choose final settings – usually with 

(non-nested) cross-validation one final time on the 
entire data



Model Selection
What settings should you test? Lots of possibilities.

Different decisions/hyperparameters depend on 
each other; not independent
• e.g., optimal regularization strength depends on what 

kind of regularizer (L2 vs L1), what kind of feature 
selection, etc

Best to optimize combinations of settings, rather than 
optimizing individually



Model Selection
A grid search is the process of evaluating every 
combination of settings (from a specified set of 
potential values) on validation data

Quickly becomes expensive… example:
5 regularization values
2 regularizer types
3 kernel settings
5 feature selection settings
2 preprocessing options
= 300 combinations



Model Selection
Might only perform a grid search on a subset of 
combinations initially

One option: start by searching a small number of very 
different values (e.g., C={0.1, 1.0, 10.0, 100.0}), then 
fine-tune with more values close to the optimal one
(e.g. find that C=1.0 and C=10.0 are the best of the 
above options, so now try C={1.0,2.0,4.0,6.0,8,0,…})



Understanding and Diagnosis
In addition to measuring performance, also 
important to understand performance

Want to be able to answer:
• Why does the model make the predictions it does?
• What kinds of errors does the model make?
• What can be done to improve the model?



Error Analysis
What kinds of mistakes does a model make?
Which classes does a classifier tend to mix up?



Error Analysis



Error Analysis
A confusion matrix (or error matrix) is a table 
that counts the number of test instances with each 
true label vs each predicted label.

From:	  https://docs.orange.biolab.si/3/visual-‐programming/widgets/evaluation/confusionmatrix.html



Error Analysis
A confusion matrix (or error matrix) is a table 
that counts the number of test instances with each 
true label vs each predicted label.

• In binary classification, the confusion matrix is 
just a 2x2 table of true/false positive/negatives
• But can be generalized to multiclass settings



Error Analysis
Just as false negatives vs false positives are two 
different types of errors where one may be 
preferable, different types of multiclass errors 
may have different importance
• Mistaking a deer for an antelope is not such a bad 

mistake
• Mistaking a deer for a cereal box would be an odd 

mistake

Are the mistakes acceptable? Need to look at 
confusions, not just a summary statistic.



Error Analysis
Another way to understand why your classifier is 
behaving a certain way is to examine the 
parameters that are learned after training
• e.g., the decision tree structure, or the weight 

vector values

If features are associated with classes in a way 
that doesn’t make sense to you, that might mean 
the model is not working the way you intended
• Caveat: features interact in ways that can be hard 

to understand, so unintuitive parameters not 
necessarily wrong



Error Analysis
Another good practice: look at a sample of 
misclassified instances

From:	  https://medium.freecodecamp.org/chihuahua-‐or-‐muffin-‐my-‐search-‐for-‐the-‐best-‐computer-‐vision-‐api-‐cbda4d6b425d



Error Analysis
Another good practice: look at a sample of 
misclassified instances
• Might help you understand why the classifier is 

making those mistakes
• Might help you understand what kinds of instances 

the classifier makes mistakes on
• Maybe they were ambiguous to begin with, so not 

surprising the classifier had trouble



Error Analysis
Another good practice: look at a sample of 
misclassified instances
• If you have multiple models, can compare how 

they do on individual instances 
• If your model outputs probabilities, useful to 

examine
• If the correct class was the 2nd most probable, that’s a 

better mistake than if it was the 10th most probable



Error Analysis
Error analysis can help inform:
• Feature engineering
• If you observe that certain classes are more easily 

confused, think about creating new features that 
could distinguish those classes

• Feature selection
• If you observe that certain features might be hurting 

performance (maybe the classifier is picking up on 
an association between a feature and a class that 
isn’t meaningful), you could remove it



Learning Curves
A learning curve measures the performance of 
a model at different amounts of training data



Learning Curves
Primarily used to understand two things:
• How much training data is needed?
• Bias/variance tradeoff



Learning Curves
How much training data is needed?
Usually the validation accuracy increases 
noticeable after an initial increase in training data, 
then levels off after a while
• Might still be increasing, but with diminishing returns

The learning curve can be used to predict the 
benefit you’ll get from adding more training data
• Still increasing rapidly → get more data
• Completely flattened out → more data won’t help
• Gradually increasing → need a lot more data to help



Learning Curves
A typical pattern is that:
• Training accuracy decreases with more data
• Validation accuracy increases
• The two accuracies should converge to be similar

Something to look for:
• If gap between train/validation performance isn’t 

closing, probably too much variance (overfitting)
• If gap between train/validation closes quickly, 

might suggest high bias (underfitting)





Validation Curves
A validation curve measures the performance of a 
model at different hyperparameter settings



Validation Curves
Validation curves help you understand the effect 
of hyperparameters, and also help understand 
the bias/variance tradeoff
• Want to find a setting where train/validation 

performance is similar (low variance)
• Of the settings where train/validation performance 

are similar, pick the one with the highest validation 
accuracy (low bias)



Precision-Recall Curve

From:	  https://stackoverflow.com/questions/33294574/good-‐roc-‐curve-‐but-‐poor-‐precision-‐recall-‐curve



ROC Curve

From:	  https://stackoverflow.com/questions/33294574/good-‐roc-‐curve-‐but-‐poor-‐precision-‐recall-‐curve



Debugging
Lots of places in the pipeline where there could 
be an implementation mistake:
• Data preprocessing
• Feature engineering
• Training algorithm
• Validation pipeline

Best to start simple, compare to existing 
data/systems, then expand from there


