
Data Preparation
INFO-4604, Applied Machine Learning

University of Colorado Boulder

October 17, 2017
Prof. Michael Paul

What breed is the dog in this photo?

Beagle Lab Terrier

What breed is the dog in this photo?

Beagle Lab Terrier

What breed is the dog in this photo?

“garbage in, garbage out”

Beagle Lab Terrier

Data Preprocessing
Preprocessing refers to the step of of processing
your raw data in a way that makes it suitable for
use in a learning algorithm.
• (in contrast to “processing” which would refer to the

process of feeding the data into the learning
algorithms)

When we talk about training data (or test data),
there’s an assumption that it’s been preprocessed.

Data Preprocessing
The main components of preprocessing are:
• Getting features out of raw (unprocessed) data
• To be covered in its own lecture

• Setting the values of the features
• Fixing incorrect or missing values
• Converting categorical values to numerical
• Standardizing/normalizing the values to a common

range
• Selecting which instances to include

Feature Extraction
Feature extraction is the process of getting the
values of features out of raw data.

Example: in HW2, the instances were tweets. The
“raw data” for each tweet is just a string.
The features were words, with values 1 or 0
indicating whether a word was in the tweet.
Prof. Paul had to convert the strings into feature
vectors before giving you the data.

• This involved tokenizing the strings (getting words
separated by white space), getting the set of words in a
tweet, that setting the values to 1 for those words.

Feature Extraction
Different types of data and different tasks will
require different types of features and different
methods for obtaining features.
• More on this next time – for now, understand that

feature extraction is usually the first step.

Not all datasets require feature extraction.
If the data is already organized into columns,
you will usually take those variables to be your
features.

Feature Values
Usually, at least some work needs to be done to
transform the values of your features.

• Fixing incorrect or missing values
• Converting categorical values to numerical
• Standardizing/normalizing the values to a

common range

Missing Values
Example: Some patients might not have had
their heart rate recorded during a visit

PatientID BP(S) BP(D) Heart	 Rate Temperature

1234 120 80 75 98.5

1234 125 82 98.7

1245 140 93 95 98.5

3046 112 74 80 98.6

Missing Values
It’s surprisingly hard to deal with missing values.

• You can’t just “leave it out” of the learning
algorithm – the math expects each feature to
have a value.
• You can’t just set it to 0 – this means it is

known to be 0, which is different from being
unknown (especially if numerical).

Missing Values
Example: Some patients might not have had
their heart rate recorded during a visit

If only a small number of instances have missing
values, maybe just remove those instances.

(don’t have to deal with the problem)

PatientID BP(S) BP(D) Heart	 Rate Temperature

1234 120 80 75 98.5

1234 125 82 98.7

1245 140 93 95 98.5

3046 112 74 80 98.6

Missing Values
Example: Some patients might not have had
their heart rate recorded during a visit

If a lot of values are missing for a feature, maybe
remove that feature.

(don’t have to deal with the problem)

PatientID BP(S) BP(D) Heart	 Rate Temperature

1234 120 80 75 98.5

1234 125 82 98.7

1245 140 93 95 98.5

3046 112 74 80 98.6

Missing Values
Example: Some patients might not have had their
heart rate recorded during a visit

You might also impute the missing values.
• Then you can treat the instances/features normally,

and hopefully it’s close enough.

PatientID BP(S) BP(D) Heart	 Rate Temperature

1234 120 80 75 98.5

1234 125 82 76.58? 98.7

1245 140 93 95 98.5

3046 112 74 80 98.6

Missing Values
Simplest methods to imputing a missing value:
• Take the mean of the values (if numerical)
• Take the majority value (if categorical)

You can also be more intelligent about it, but it
depends on the data/task
• In the example of patient records, if there are

multiple records for a patient, you could take the
average value for that specific patient instead of
averaging from all patients.

Missing Values
Example: Some patients might not have had their
heart rate recorded during a visit

You can also have a special “unknown” value.
• The classifier will then learn what to do when a

feature has an unknown value.

PatientID BP(S) BP(D) Heart	 Rate Temperature

1234 120 80 75 98.5

1234 125 82 UNK 98.7

1245 140 93 95 98.5

3046 112 74 80 98.6

Incorrect Values
A feature may have an incorrect value for various
reasons.
• Transcription error (especially if automated, e.g. OCR)
• Human error (e.g., accidentally overwriting a value)
• Output error (e.g., if your feature is generated by

another script, which had an error)

Incorrect Values
Some errors are easy to spot!

Good to check for values outside of an accepted
range (e.g., physical limitations, constraints in a
system)

PatientID BP(S) BP(D) Heart	 Rate Temperature

1234 120 80 75 98.5

1234 125 82 720 98.7

1245 140 93 95 98.5

3046 112 74 80 98.6

Incorrect Values
There are many techniques for outlier detection
• Outliers = “extreme” values
• Outlier values may be errors (though not necessarily)

Commonly accepted definition of an outlier is a
value more than 2 standard deviations above or
below the mean.
Visualizing the distribution of values can help you
visually identify outliers.

Incorrect Values
Some errors are impossible to spot!

Maybe a nurse transcribed this heart rate
incorrectly (it was actually 73)
• No way we could know this from the data alone
• But be aware that data can have mistakes

PatientID BP(S) BP(D) Heart	 Rate Temperature

1234 120 80 75 98.5

1234 125 82 72 98.7

1245 140 93 95 98.5

3046 112 74 80 98.6

Incorrect Values
Once you identify an incorrect value, you can
treat it the same as a missing value
(if it’s incorrect, then the value is unknown)

Options:
• Remove from dataset
• Impute the value
• Give it a special “unknown” value

Categorical Values
What to do when features aren’t numeric?

PatientID Sex BP(S) BP(D) Heart	 Rate Temperature

1234 Female 120 80 75 98.5

1234 Female 125 82 72 98.7

1245 Male 140 93 95 98.5

3046 Male 112 74 80 98.6

Categorical Values
What to do when features aren’t numeric?

x1 = <“Female”, 120.0, 80.0, 75.0, 98.5>

How would we plug x1 into wTx1?

PatientID Sex BP(S) BP(D) Heart	 Rate Temperature

1234 Female 120 80 75 98.5

1234 Female 125 82 72 98.7

1245 Male 140 93 95 98.5

3046 Male 112 74 80 98.6

Categorical Values
Feature values need to be numeric for most
learning algorithms! (decision trees an exception)

Common approach: one-hot encoding

Example: Sex
• Replace Sex with two variables:

• SexIsMale, SexIsFemale
• These two variables are binary-valued

• 1 if true, 0 if not

Categorical Values
Original encoding:

One-hot encoding:

PatientID Sex BP(S) BP(D) Heart	 Rate Temperature

1234 Female 120 80 75 98.5

1234 Female 125 82 72 98.7

1245 Male 140 93 95 98.5

3046 Male 112 74 80 98.6

PatientID M F BP(S) BP(D) Heart	 Rate Temperature

1234 0 1 120 80 75 98.5

1234 0 1 125 82 72 98.7

1245 1 0 140 93 95 98.5

3046 1 0 112 74 80 98.6

Categorical Values
If you have ordinal values (e.g, small, medium,
large), you might encode them with one feature
that has increasing numerical values (e.g., 1, 2, 3)
• See book more for examples

Also note: you might have values consisting of
numbers, but should still be treated as categorical
instead of numerical values
• (e.g., zip code 80309)

Normalization
Normalization (or standardization) is the
process of adjusting values so that the values of
different features are on a common scale.
• Often these terms are used interchangeably
• The book distinguishes them as:
• Normalization puts values in the range of [0,1]

• Prof. Paul doesn’t agree with this definition…
• But when working with probabilities, “normalization” refers

to converting values to probabilities.
• Standardization converts values to their standard

score

Normalization
Min-max normalization adjusts values as:

X’ = X – Xmin

Xmax – Xmin

This converts all values to the range [0, 1],
where the smallest value will be 0 and largest
value will be 1.
Can instead map to the range [a, b] using:
X’ = a + (X – Xmin)(b – a)

Xmax – Xmin

where Xmin is the smallest value of
the feature, and Xmax is the largest.

Normalization
Standard score (or z-score) normalization
adjusts values as:

X’ = X – μ
σ

Negative z-scores are values that are below the
mean, while positive z-scores are above the
mean, and the mean has a z-score of 0.

A z-score of 1 or -1 is one standard deviation
above or below the mean.

where μ is the mean value of that
feature, and σ is the standard dev.

