3 suspects in a crime make the following statements. Exactly one of them is telling the truth.

- Suspect A: I am innocent
- Suspect B: Suspect C is guilty
- Suspect C : I am innocent

Who is telling the truth, and who is guilty of the crime?

Let the boolean variables A, B, and C denote whether the corresponding suspect is guilty (true) or innocent (false).
Only one of the three variables can be true.

If suspect A is telling the truth, this means:

Suspect A: I am innocent Suspect B: Suspect C is guilty Suspect C: I am innocent
$(\neg A \wedge \neg C \wedge \neg-C)=$ True
But it is not possible for $\neg C \wedge \neg \neg C=\neg C \wedge C$ to be true (contradiction)

If suspect B is telling the truth, this means:
($\mathrm{C} \wedge \neg \neg \mathrm{A} \wedge \neg-\mathrm{C}$) = True
But this can only be true if C and A are both true, but the problem states that only one variable can be true.

Let the boolean variables A, B, and C denote whether the corresponding suspect is guilty (true) or innocent (false).
Only one of the three variables can be true.

If suspect C is telling the truth, this means:

Suspect A: I am innocent
Suspect B: Suspect C is guilty Suspect C: I am innocent
$(\neg \mathrm{C} \wedge \neg \mathrm{C} \wedge \neg \neg \mathrm{A})=$ True
This can be simplified as: $(-C \wedge A)$.
There is no contradiction with this statement. This means Suspect C is telling the truth.
In order for Suspect C's statement to be True, the variable A must be True. In other words, Suspect A is guilty (and Suspects B and C are innocent).

