PERMUTATIONS AND COMBINATIONS

Finite Mathematics for Data Science

- Statistics
- Probability
- Set Theory
- Combinatorics

‘Combination’ in Everyday Language

- Everyday language not precise about the meaning of the word 'combination'
- "The soup includes a combination of fish and seafood items"
- Order in which the ingredients are listed does not matter.
- "The combination of the lock is 6-16-28.
- Order does matter here.

Math has precise meanings

- When order does not matter -> combination.
- When order does matter -> permutation.
- Permutations and combinations are closely connected - as are the formulas for calculating them.
- Always more permutations than combinations.
- 1 combination of a,b,c.
- 6 permutations of a, b, c :
- abc, acb, bac, bca, cab, cba [no repetition allowed]
- Easiest to look at permutations first; then at combinations

Permutations with Repetitions

- How many permutations with repetition allowed when we are making a 3 letter permutation from a set with 5 elements: a, b, c, d, e

■ aaa, aab, aac, aad, aae, aba, abb, abc, ...

- While you could list them all, you could also reason about how many there are:
- First letter, there are 5 choices.
- Second letter, there are 5 choices
- Third letter there are 5 choices.
- Hence, there are $5 \times 5 \times 5=125$ choices.
- More generally, choosing r of something with n different types [where order matters and repetitions are allowed, $n \times n \times n \times \ldots \times n$ (r times $=n^{r}$

Examples of permutation with repetitions

- How many three number combinations in a lock are there if the possible numbers are the digits 0 through 9 ?
- $10 \times 10 \times 10=1000$
- Cars sometimes have locks with four-digit codes but the choices of numbers are $0 / 1$ 2/3 4/5 6/7 8/9
- In this case it is $5 \times 5 \times 5 \times 5=625$

Permutation without repetition

- How many permutations could a rack of pool balls be in?
- Numbers 1 through 15, plus a white (cue) ball (think of it as 0)
- Without repetition, our choices get reduced each time.
- Permutation without repetition 16 choices for first one, 15 choices for second one, etc.
- Permutations $=16 \times 15 \times 14 x \ldots \times 3 \times 2 \times 1=16!$ (more than 20 trillion)

■ Suppose you only want 3 ball permutation without repetition

- $16 \times 15 \times 14=3360$
- Factorial symbol $n!=n \times(n-1) \times(n-2) x \ldots \times 2 \times 1$
- Special cases: $1!=1,0!=1$

General Rule of $\mathrm{P}(\mathrm{n}, \mathrm{r})$

- If only choosing 3 from the group of 16 balls, the permutations without repetition is $16 \times 15 \times 14$
- But this can be written as $16!/ 13$!
- General rule of permutations without repetition:

The number of permutations without repetition where n is the number of things to choose from, and r is the number of items we are choosing is given by

$$
n!/(n-r)!
$$

Example P(n,r)

■ How many ways can first and second place be awarded in a race of 10 contestants?

$$
\begin{aligned}
P(10,2)=10!/(10-2)! & =3628800 / 40320=9 \\
& =10 \times 9
\end{aligned}
$$

Combinations

- Also two types
- Repetition allowed (change in your pocket)
- Repetition not allowed (lottery numbers)
- Start with combinations without repetition (easiest to explain)
- Way to do the analysis
- First, do as a permutation problem (where order matters)
- Second, alter the answer to get rid of the concern about order.

Combinations C(n,r)

- Choose three balls from 16 (no repetition)
- We did that already and got 16! / (16-3)!
- Second, we divide by 3! Because there are 3! ways in which 3 balls can be ordered
- Then the number of combinations of 3 balls taken from 16 , without repetition, is

■ [16! / (16-3)! $/ 3$! = $16 \times 15 \times 14 / 3 \times 2 \times 1=560$

- General formula for $C(n, r)=n!/ r!(n-r)$!
- Expressed as "n choose r"

Symmetry

- $C(n, r)=C(n-r, r)$
- Work out the formulas

The hard case: combinations with repetition

- Will not motivate it:
- $C_{\text {rep }}(n, r)=[r+n-1]!/ r![n-1)$!
- Example: how many variations of triple scoop of ice cream with the ice cream flavors banana, chocolate, lemon, strawberry, vanilla
- $[3+5-1]!/ 3![5-1]!=7!/[3!\times 4!]=5040 /[6 \times 24]=35$

