Derivatives

INFO-1301, Quantitative Reasoning 1 University of Colorado Boulder

April 26-28, 2017
Prof. Michael Paul

Slope for Nonlinear Functions

We've defined slope for straight lines (linear functions) What about other kinds of functions?

$$
f(x)=x^{2}
$$

Slope for Nonlinear Functions

For nonlinear functions, the "rise over run" formula gives you the average slope between two points

Slope for Nonlinear Functions

For nonlinear functions, the "rise over run" formula gives you the average slope between two points

Slope for Nonlinear Functions

For nonlinear functions, the "rise over run" formula gives you the average slope between two points

Practice

A climber is on a hike. After 2 hours he is at an altitude of 6400 feet. After 6 hours, he is at an altitude of 6700 feet.

What is the average rate of change?

You can reason about the average rate of change without making any assumptions that the rate of change was the same during the entire duration

Slope at a Point

There is also a concept of slope for individual points (rather than two points)

Slope at a Point

There is also a concept of slope for individual points (rather than two points)

Slope at a Point

There is also a concept of slope for individual points (rather than two points)

Slope at a Point

The slope at a point is called the derivative at that point

Intuition:
Measure the slope between two points that are really close together

Derivatives

The slope at a point is called the derivative at that point
Intuition: Measure the slope between two points that are really close together

$$
\frac{f(x+c)-f(x)}{c}
$$

Make c as small as possible (even zero!)

Derivatives

The derivative of x^{2} is $2 x$

Other ways of writing this:
$f^{\prime}(x)=2 x$
$d / d x\left[x^{2}\right]=2 x$

The derivative is also a function! It depends on the value of x.

- The slope is different at different points

Derivatives

The derivative of x^{2} is $2 x$
$f(x)$
$f^{\prime}(x)$

Calculating Derivatives

The derivative of a quadratic function is linear The derivative of a linear function is constant

- Just the definition of slope you have seen before

The derivative of a constant is 0

Calculating Derivatives

Tool to calculate derivatives:
Wolfram Alpha (wolframalpha.com)

Enter the query:
$\mathrm{d} / \mathrm{dx} \mathrm{x}^{\wedge} 2$
(or other functions)

Practice

The monthly temperature in Boulder can be approximated with a quadratic function:
$y=-1.3 x^{2}+17.5 x+21.4$

What is the rate of change in temp. at each month?

Interpreting Derivatives

If a derivative is positive at a point, the function is increasing at that point
If a derivative is negative at a point, the function is decreasing at that point
If a derivative is zero at a point, the function is neither increasing nor decreasing

- Often this is because it is at a point where it switches from increasing to decreasing (or vice versa)

Interpreting Derivatives

$\mathrm{f}(\mathrm{x})$

$\mathrm{f}^{\prime}(\mathrm{x})$

Maxima and Minima

A local maximum is when the rate of change switches from positive to negative
A local minimum is when the rate of change switches from negative to positive

If the derivative is 0 , there is a maximum or minimum at that point (with some caveats)

To find when a function is maximized or minimized, set the derivative to 0 and solve for x

Maxima and Minima

Minimum (local and global) at $\mathbf{x}=\mathbf{0}$

$$
f(x)
$$

$f^{\prime}(x)$

Practice

A recreational swimming lake is treated periodically to control harmful bacteria growth. Suppose x days after treatment, the concentration of bacteria per cubic centimeter is given by:
$f(x)=30 x^{2}-240 x+500$

How many days after treatment will the concentration be minimal?
What is the minimal concentration?

Practice

A company estimates that its daily total cost function (based on number of items produced) is
$C(x)=x^{3}-6 x^{2}+13 x+15$
and its total revenue function is
$R(x)=28 x$

Find the value of x that maximizes the daily profit.

Uses of Derivatives

- Derivatives are necessary to solve linear regression
- Minimize the squared error
- Also used to build probability models
- Maximize the probability of your data
- Lots of technologies use derivatives for optimization (e.g., ad placement)

