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Sampling Distribution
The sampling distribution is approximately normal
• The mean is the true population mean
• The standard deviation is called the standard error (SE)

SE = 

• σ is the standard deviation of your data (unknown – so 
use the standard deviation from your sample)
• n is the size of your sample

• Larger n → smaller standard error 
(sample mean is more likely to be close to population mean)

This is known as the 
Central Limit Theorem



A Visualization
• http://students.brown.edu/seeing-

theory/statistical-inference/index.html#first



An Example
• US household income is heavily right-skewed
• (thanks to people like Bill Gates and Warren Buffett)
• Can tell this from the large difference between 

median = 51.9 (K$) and the mean = 71.9 (K$)
• Even though the population is right skewed, 

when you take 1000 samples of size n=100, 
they will form a normal distribution around 71.9.

A property of the Central Limit Theorem: 
the sampling distribution is normal (symmetric), 
even if the distribution you sample from is not! 



An Example
• US household income is heavily right-skewed
• (thanks to people like Bill Gates and Warren Buffett)
• Can tell this from the large difference between 

median = 51.9 (K$) and the mean = 71.9 (K$)
• Even though the population is right skewed, 

when you take 1000 samples of size n=100, 
they will form a normal distribution around 71.9.
• If you took 1000 samples of size n=25, the 

sample means would form a normal distribution 
with twice the standard error as n=100.



An Example
• If you changed your population to single-earner 

households where the employed person was a public 
school teacher, the population would be less dispersed 
and thus the sample means would also be less 
dispersed (μ=56.3 in 2014, NCES)
• If you surveyed a sample of 100 people and the sample 

mean of their salary was 82.1, you would know either 
that this sample was not drawn from public school 
teachers or that it was not a random sample of teachers 
because 82.1 is far removed from 56.3.
• How far removed?
• If SD = 18.0, then SE = 18.0 / 10 = 1.8

Z = (82.1 – 56.3) / 1.8= 14.33
• The probability of a sample mean this extreme is 

< 0.00001



P-Values
In the previous example, we said that if our 
sample mean was 82.1, we must not have 
sampled from public school teachers.
The reason we can be confident about this is that 
it is extremely unlikely we would have gotten this 
mean if we randomly sampled from teachers.
• There is a very small probability (< 0.00001) that we 

could have gotten this measurement.

In the context of describing your confidence of a 
measurement, this probability is called a p-value.



P-Values
Loosely speaking, a p-value is the probability of 
getting a particular measurement by chance.

• If your p-value is very small, then you most likely 
need to come up with a different explanation for 
your result than your default assumption
• If you are a testing a new theory, a low p-value for 

the old idea is evidence that the new idea is true

A more rigorous explanation of 
p-values can be found in Diez 4.3 
(but not required)



Another Example



Another Example
Statistician Charles Sanders Pierce examined 42 
genuine signatures, and looked to see how often 
the strokes in pairs of signatures lined up
• He examined all 861 pairs of signatures

• Where does this come from? 42 choose 2 = 861

The strokes were a match one-fifth of the time
• Probability of a match is 0.2
The signature in question contained 30 strokes
• What is the probability of all 30 strokes matching?

0.230 = 0.0000000000000000001
• This assumes strokes are independent, which isn’t quite right.



Another Example
If we assume that this is a good probability model 
for signatures, then the p-value of having an exact 
match in this case is 0.0000000000000000001.

In other words, it is extremely unlikely that the 
signatures would be an exact match by chance.
• There is likely some other explanation 

(e.g., forgery)



Summary
P-values can tell you if an observation, or the 
differences between observations, are meaningful

• Can detect fraud or cheating
• Can say if an experiment has an effect that is 

significant (e.g., does bacon cause cancer?)



Summary
If a p-value is large, that means it is likely what 
you observed is due to chance, so it is unlikely to 
be meaningful.

If a p-value is small, that means it is unlikely to be 
due to chance, so there is likely another 
explanation.
• What is considered small? It depends, but a 

commonly accepted cutoff is p < 0.05


