Problem 1(a)

Suppose car license plates have 3 letters followed by 3 numbers, chosen uniformly at random.

- What is the probability of getting the license plate, ABC123?
- $(1 / 26)^{\star}(1 / 26)^{\star}(1 / 26)^{*}(1 / 10)^{*}(1 / 10)^{*}(1 / 10)$

Problem 1(b)

Suppose car license plates have 3 letters followed by 3 numbers, chosen uniformly at random.
-What is the probability that the first letter is \mathbf{A} ?

- 1/26

Problem 1(c)

Suppose car license plates have 3 letters followed by 3 numbers, chosen uniformly at random.

- What is the probability that the third letter is \mathbf{A} ?
- 1/26

Problem 1(d)

Suppose car license plates have 3 letters followed by 3 numbers, chosen uniformly at random.

- What is the probability that the last two digits are 35 ?
- (1/10)*(1/10)

Problem 1(e)

Suppose car license plates have 3 letters followed by 3 numbers, chosen uniformly at random.

- What is the probability that the license plate does not start with an A?
- 1 - $1 / 26=25 / 26$

Problem 1(f)

Suppose car license plates have 3 letters followed by 3 numbers, chosen uniformly at random.

- What is the probability that the license plate does not contain an A?
- (25/26)* $(25 / 26)^{*}(25 / 26)$
- $P(1$ st letter $\neq A$ AND 2nd letter $\neq A$ AND 3rd letter $\neq A$)

Problem 1(g)

Suppose car license plates have 3 letters followed by 3 numbers, chosen uniformly at random.

- What is the probability that the first letter is \mathbf{A} or the second letter is \mathbf{A} ?
- $1 / 26+1 / 26-(1 / 26)^{2}$
- $P(1$ st letter $=A \quad O R$ 2nd letter $=A)=$
$P(1$ st letter $=A)+P(2 n d$ letter $=A)$
$-P(1$ st letter $=A$ AND 2nd letter $=A)$

Problem 1(h)

Suppose car license plates have 3 letters followed by 3 numbers, chosen uniformly at random.

- What is the probability that the license plate contains an A?

$$
\begin{aligned}
& \text { - } 1 / 26+1 / 26+1 / 26-3^{*}(1 / 26)^{2}+(1 / 26)^{3} \\
& \cdot \\
& P(1 \text { st }=A \text { OR 2nd }=A \text { OR } 3 r d=A) \\
& =P(1 s t=A)+P(2 n d=A)+P(3 r d=A) \\
& -P(1 s t=A \text { AND 2nd=A) }-P(1 s t=A \text { AND } 3 r d=A) \\
& -P(2 n d=A \text { AND } 3 r d=A) \\
& +P(1 s t=A \text { AND } 2 n d=A \text { AND } 3 r d=A)
\end{aligned}
$$

Problem 2(a)

Suppose car license plates have 3 letters followed by 3 numbers. The letter Z is not used and the number 0 is not used. The letter A is twice as likely as all other letters, and the number 0 is twice as likely as all other numbers.

- What is the probability of getting the license plate, ABC123?
- $(2 / 26)^{\star}(1 / 26)^{\star}(1 / 26)^{\star}(2 / 10)^{*}(1 / 10)^{*}(1 / 10)$

Problem 2(b)

Suppose car license plates have 3 letters followed by 3 numbers. The letter Z is not used and the number 0 is not used. The letter A is twice as likely as all other letters, and the number 1 is twice as likely as all other numbers.

- What is the probability of getting the license plate, XYZ123?
- 0

Problem 3(a)

A student must choose exactly two out of three electives: art, French, and mathematics. They choose art with probability $5 / 8$, French with probability $5 / 8$, and art and French together with probability $1 / 4$.

- What is the probability that they choose mathematics?
- $\mathrm{P}($ NOT (Art AND French) $)=1-1 / 4$
$\cdot=3 / 4$

Problem 3(b)

A student must choose exactly two out of three electives: art, French, and mathematics. They choose art with probability $5 / 8$, French with probability $5 / 8$, and art and French together with probability $1 / 4$.

- What is the probability that they choose either art or French?
- P(Art OR French)
$=P($ Art $)+P($ French $)-P($ Art AND French $)$ $=5 / 8+5 / 8-1 / 4=1$

Problem 4

A local club plans to invest $\$ 10000$ to host a baseball game. They expect to sell tickets worth $\$ 15000$. But if it rains on the day of game, they won't sell any tickets and the club will lose all the money invested.

- What is the expected value of the profit if there is a 20% chance of rain?
- 5000*0.8-10000*0.2 = \$2000

Problem 5

The probability of owning a dog is 0.44 .
The probability of owning a cat is 0.29 .
The probability of owning both is 0.17 .

- Is owning a cat independent from owning a dog?
- No.
- $0.44^{*} 0.29=0.128$
- $P($ dog AND cat $) \neq P(d o g)^{*} P($ cat $)$

