Quantifying Randomness Part 2: Understanding Entropy
 INFO-1301, Quantitative Reasoning 1
 University of Colorado Boulder

October 5, 2016
Prof. Michael Paul
Prof. William Aspray

How uncertain is a distribution?

One extreme: everything is equally likely
$\mathrm{P}(X=1)=0.2$
$\mathrm{P}(X=2)=0.2$
$\mathrm{P}(X=3)=0.2$
$\mathrm{P}(X=4)=0.2$
$\mathrm{P}(X=5)=0.2$

With this distribution, you are completely uncertain about what the outcome will be

How uncertain is a distribution?

Another extreme: only one outcome is likely
$\mathrm{P}(X=1)=0.0$
$\mathrm{P}(X=2)=0.0$
$\mathrm{P}(X=3)=1.0$
$\mathrm{P}(X=4)=0.0$
$\mathrm{P}(X=5)=0.0$

With this distribution, you are completely certain about what the outcome will be

Information Entropy

Entropy is a measurement of how evenly distributed a probability distribution is

Lower entropy means it is less even, more certain Higher entropy means it is more even, less certain

Where did entropy come from?

Entropy is a fundamental part of a discipline of study called information theory

Information theory originated in research in telecommunications

- How is information stored?
- How is information transmitted?

Relatively new insight: How can we quantify information?

Claude Shannon, 1916-2001

Where did entropy come from?

A Mathematical Theory of Communication by Claude Shannon, 1948

Interpreting Entropy

Which of these variables has more information?
$\mathrm{P}(X=1)=0.0$
$\mathrm{P}(X=2)=0.0$
$\mathrm{P}(X=3)=1.0$
$\mathrm{P}(X=4)=0.0$
$\mathrm{P}(X=5)=0.0$
个

If I tell you that $X=3$, I didn't tell you anything you didn't already know
> No new information

$$
\begin{aligned}
& \mathrm{P}(X=1)=0.2 \\
& \mathrm{P}(X=2)=0.2 \\
& \mathrm{P}(X=3)=0.2 \\
& \mathrm{P}(X=4)=0.2 \\
& \mathrm{P}(X=5)=0.2
\end{aligned}
$$

Interpreting Entropy

Which of these variables has more information?

$$
\begin{aligned}
& \mathrm{P}(X=1)=0.0 \\
& \mathrm{P}(X=2)=0.0 \\
& \mathrm{P}(X=3)=1.0 \\
& \mathrm{P}(X=4)=0.0 \\
& \mathrm{P}(X=5)=0.0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}(X=1)=0.2 \\
& \mathrm{P}(X=2)=0.2 \\
& \mathrm{P}(X=3)=0.2 \\
& \mathrm{P}(X=4)=0.2 \\
& \mathrm{P}(X=5)=0.2
\end{aligned}
$$

You don't know anything about what the value of X might be
> Telling you X gives new information

Interpreting Entropy

Entropy is the average number of times you'll be wrong if you guess the answer based on probability
$P(X=1)=0.0$
$\mathrm{P}(X=2)=0.0$
$P(X=3)=1.0$
$\mathrm{P}(X=4)=0.0$
Always guess $X=3$.
Never wrong! So entropy is 0 .
$\mathrm{P}(X=5)=0.0$

Interpreting Entropy

Entropy is the average number of times you'll be wrong if you guess the answer based on probability
$\mathrm{P}(X=1)=0.2$
$\mathrm{P}(X=2)=0.2$
$\mathrm{P}(X=3)=0.2$
$\mathrm{P}(X=4)=0.2$
$\mathrm{P}(X=5)=0.2$
Not clear what to guess first.

Interpreting Entropy

Entropy is the average number of times you'll be wrong if you guess the answer based on probability
$P(X=1)=0.2$
$\mathrm{P}(X=2)=0.2$
$\mathrm{P}(X=3)=0.2$
$\mathrm{P}(X=4)=0.2$
$\mathrm{P}(X=5)=0.2$

Start with $X=1$.
Wrong 80% of the time.

Interpreting Entropy

Entropy is the average number of times you'll be wrong if you guess the answer based on probability
$\mathrm{P}(X=1)=0.2$
$\mathrm{P}(X=2)=0.2$
$\mathrm{P}(X=3)=0.2$
$\mathrm{P}(X=4)=0.2$
$\mathrm{P}(X=5)=0.2$
Move on to $X=2$.
Wrong 75% of the time.

Interpreting Entropy

Entropy is the average number of times you'll be wrong if you guess the answer based on probability
$\mathrm{P}(X=1)=0.2$
$\mathrm{P}(X=2)=0.2$
$\mathrm{P}(X=3)=0.2$
$\mathrm{P}(X=4)=0.2$
$\mathrm{P}(X=5)=0.2$
Keep repeating until you get the right answer.
On average, you'll have to guess $H(X)=2.3$ times

Using Entropy

Entropy measures predictability

How Predictable Is U.S. Weather?
Based on data from 120 NWS weather stations, 1994-2013

Using Entropy

Entropy measures predictability

Entropy can be used as a measurement of risk, e.g., selecting a stock portfolio

Using Entropy

Entropy measures equality
Entropy can measure income equality

- You saw this in your homework

Entropy can measure diversity in a population

- You'll see this today in MiniTab

The more equal or even a distribution is, the harder it is to predict the outcome

