Probability Basics Part 2: Probability Operations

INFO-1301, Quantitative Reasoning 1 University of Colorado Boulder

September 28, 2016
Prof. Michael Paul
Prof. William Aspray

Operations

Last month we learned about different

 mathematical operations for sets and booleans:Sets:
Intersection
Union
Complement

Booleans:
AND
OR
NOT

These operations can also be used to compute probabilities for random variables

Example

Consider the probability of different outcomes from the roll of a die

$$
\begin{aligned}
& \mathrm{P}(X=1)=1 / 6 \\
& \mathrm{P}(X=2)=1 / 6 \\
& \mathrm{P}(X=3)=1 / 6 \\
& \mathrm{P}(X=4)=1 / 6 \\
& \mathrm{P}(X=5)=1 / 6 \\
& \mathrm{P}(X=6)=1 / 6
\end{aligned}
$$

Distribution over 6 possible outcomes

A distribution where all outcomes are equally likely is a uniform distribution

Disjunctions

If two or more outcomes cannot all be true at once, they are called disjoint or mutually exclusive

Die roll outcomes are disjoint

- A die cannot land a 3 and also a 4

Complements

The complement of an outcome is the set of all other outcomes in the sample space

- This is the same as the set complement operation that you learned about before

Remember:
Sample space is the domain of the random variable, which is a set of the possible outcomes

When discussing complements, we assume the outcomes are disjoint

AND

The probability that multiple outcomes are true can be described with an AND expression

$$
\mathrm{P}(X=3 \text { AND } X=4)=0
$$

If the outcomes are disjoint, the probability of the AND of multiple outcomes will always be 0

AND

The probability that multiple outcomes are true can be described with an AND expression

Harder example: two dice
X is outcome of first die; Y is outcome of second
$\mathrm{P}(X=3$ AND $Y=4)=1 / 36$
$\mathrm{P}(X=4$ AND $Y=3)=1 / 36$
$\mathrm{P}(X=4$ AND $Y=4)=1 / 36$

The probability that any outcome is true can be described with an OR expression

$$
\mathrm{P}(X=3 \text { OR } X=4)=2 / 6
$$

Addition rule:
If outcomes are disjoint, the probability that any of them are true is the sum of their individual probabilities

OR

The probability that any outcome is true can be described with an OR expression

$$
\begin{aligned}
\mathrm{P}(X>3) & =\mathrm{P}(X=4 \text { OR } X=5 \text { OR } X=6) \\
& =\mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6) \\
& =1 / 6+1 / 6+1 / 6 \\
& =1 / 2
\end{aligned}
$$

OR

What if the outcomes aren't disjoint?

Harder example: two dice
X is outcome of first die; Y is outcome of second

$$
P(X=3 \text { OR } Y=4)=?
$$

$P(X=3)+P(Y=4)$ isn't quite right:
the outcome $X=3$ AND $Y=4$ is counted twice

OR

What if the outcomes aren't disjoint?

Harder example: two dice
X is outcome of first die; Y is outcome of second
$P(X=3$ OR $Y=4)=$
$P(X=3)+P(Y=4)$

$-\mathrm{P}(X=3$ AND $Y=4) \longleftarrow$ Subtract out the AND
which is double counted

What if the outcomes aren't disjoint?
General addition rule: (for two outcomes) The probability that either outcome is true is the sum of their individual probabilities, minus the probability that they are both true

- i.e., $\mathrm{P}(X$ OR $Y)=P(X)+P(Y)-P(X$ AND $Y)$

Similar to calculating the cardinality of a set union: $|A \cup B|=|A|+|B|-|A \cap B|$

NOT

The probability that an outcome is not true is the probability of any other outcome in the sample space
$\mathrm{P}(X$ is NOT 3$)$
$=\mathrm{P}(X \neq 3)$
$=\mathrm{P}(X=1$ OR $X=2$ OR $X=4$ OR $X=5$ OR $X=6)$
$=5 / 6$
$=1-\mathrm{P}(X=3)$

NOT

The probability of the complement of an outcome is always 1 minus the probability of the outcome
$\mathrm{P}($ NOT $X)=1-\mathrm{P}(X)$

Venn Diagrams

If you have multiple outcomes you can draw the relationships between them as a Venn diagram

- That is, draw the sets of the outcomes that correspond to what you are calculating

The intersection is $X=3$ AND $Y=4$
The union is $X=3$ OR $Y=4$

The complement of $X=3$ is $X \neq 3$

- We assume the universal set is all possible dice rolls

